test_elementwise_dev_api.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

#include "paddle/pten/include/math.h"

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

24 25 26
namespace pten {
namespace tests {

27 28 29
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

30
TEST(DEV_API, add) {
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  pten::DenseTensor dense_x(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

  pten::DenseTensor dense_y(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
62
  auto dense_out = pten::Add<float>(
63 64 65 66 67 68 69 70
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
71
  ASSERT_EQ(dense_out.meta().dtype, pten::DataType::FLOAT32);
72 73 74 75 76 77 78 79 80 81
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sum;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

TEST(DEV_API, subtract) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  pten::DenseTensor dense_x(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

  pten::DenseTensor dense_y(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
  auto dense_out = pten::Subtract<float>(
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
124
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
125 126 127 128 129 130 131 132 133 134
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sub;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

TEST(DEV_API, divide) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  pten::DenseTensor dense_x(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

  pten::DenseTensor dense_y(alloc,
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
  auto dense_out = pten::Divide<float>(
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
  ASSERT_EQ(dense_out.meta().dtype, pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = div;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
188 189 190

}  // namespace tests
}  // namespace pten