layers.py 57.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3
import paddle.v2.fluid.core as core
import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
from paddle.v2.fluid.framework import OpProtoHolder, Variable, Program, \
Y
Yu Yang 已提交
4
    Operator
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.initializer import ConstantInitializer, \
6
    NormalInitializer, XavierInitializer
Q
Qiao Longfei 已提交
7
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
8
import re
9
import cStringIO
Y
Yu Yang 已提交
10

Q
QI JUN 已提交
11
__all__ = [
Y
Yu Yang 已提交
12
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
13
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
14
    'batch_norm', 'accuracy', 'split_lod_tensor'
Q
QI JUN 已提交
15
]
Y
Yu Yang 已提交
16 17


F
fengjiayi 已提交
18 19
def fc(input,
       size,
C
chengduoZH 已提交
20
       num_flatten_dims=1,
F
fengjiayi 已提交
21
       param_attr=None,
22
       param_initializer=None,
Q
QI JUN 已提交
23
       bias_attr=None,
24
       bias_initializer=None,
F
fengjiayi 已提交
25
       act=None,
C
chengduoZH 已提交
26
       name=None,
27 28
       main_program=None,
       startup_program=None):
29 30 31 32 33 34
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
35
       num_flatten_dims: Number of columns in input
36
       param_attr: The parameters/weights to the FC Layer
37 38
       param_initializer: Initializer used for the weight/parameter.
       If None, XavierInitializer() is used
39
       bias_attr: The bias parameter for the FC layer
40 41
       bias_initializer: Initializer used for the bias.
       If None, then ConstantInitializer() is used
42
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
43
       name: Name/alias of the function
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
59 60 61 62 63 64 65

    def _get_default_param_initializer():
        return XavierInitializer()

    def _get_default_bias_initializer():
        return ConstantInitializer()

Y
Yu Yang 已提交
66 67 68 69
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

70 71 72 73 74 75
    if param_initializer is None:
        param_initializer = _get_default_param_initializer()

    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

Y
Yu Yang 已提交
76 77 78
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
79 80 81
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
82
        w = helper.create_parameter(
83 84 85 86
            attr=param_attr,
            initializer=param_initializer,
            shape=param_shape,
            dtype=dtype)
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
95 96
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104 105 106
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
107
    pre_activation = helper.append_bias_op(pre_bias, bias_initializer)
Y
Yu Yang 已提交
108 109 110 111
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
112 113
def embedding(input,
              size,
114
              is_sparse=False,
Q
Qiao Longfei 已提交
115
              param_initializer=None,
Q
QI JUN 已提交
116
              param_attr=None,
C
chengduoZH 已提交
117
              data_type='float32',
118 119
              main_program=None,
              startup_program=None):
120 121 122 123 124 125 126 127
    """
    Embedding Layer.

    Args:
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
C
chengduoZH 已提交
128
       data_type: The type of data : float32, float_16, int etc
129 130 131 132 133 134 135 136 137 138 139
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
140 141 142 143

    def _get_default_param_initializer():
        return XavierInitializer()

Q
QI JUN 已提交
144 145
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Q
Qiao Longfei 已提交
146 147 148 149
        attr=helper.param_attr,
        shape=size,
        dtype=data_type,
        initializer=param_initializer or _get_default_param_initializer())
Q
QI JUN 已提交
150 151 152 153 154
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
155 156
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
157 158 159
    return tmp


Q
QI JUN 已提交
160 161 162 163 164 165 166 167 168 169
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
C
chengduoZH 已提交
170
                 data_type='float32',
Q
QI JUN 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=data_type)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=data_type, suffix='b')

    hidden = helper.create_tmp_variable(data_type)
    cell = helper.create_tmp_variable(data_type)
    batch_gate = helper.create_tmp_variable(data_type)
    batch_cell_pre_act = helper.create_tmp_variable(data_type)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
209 210
def data(name,
         shape,
C
chengduoZH 已提交
211
         append_batch_size=True,
F
fengjiayi 已提交
212 213
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
214
         main_program=None,
215 216
         startup_program=None,
         stop_gradient=True):
217 218 219 220 221 222
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
223
       append_batch_size: Whether or not to append the data as a batch.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
       data_type: The type of data : float32, float_16, int etc
       type: The output type. By default it is LOD_TENSOR.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
239
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
240 241 242 243 244 245 246 247
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
248 249
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
250

Y
Yu Yang 已提交
251
    return helper.create_global_variable(
252 253 254 255 256
        name=name,
        shape=shape,
        dtype=data_type,
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
257 258


Y
Yu Yang 已提交
259
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
260 261
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
262 263 264


def _convert_(name):
265 266 267 268 269 270 271 272 273 274 275
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
276 277 278 279
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


280 281 282
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
332
def _create_op_func_(op_type):
333 334 335 336 337 338 339 340 341 342
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
343
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
344 345 346 347 348 349
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
350 351
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
352

353
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
354
        raise ValueError(
355
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
356

357 358
    for output in intermediate_outputs:
        if output.duplicable:
359 360
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
361 362 363

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
364

Y
Yang Yang(Tony) 已提交
365
    def infer_and_check_data_type(op_proto, **kwargs):
366 367 368 369
        """
        This function performs the sanity check for data_type and
        instance type.
        """
Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_data_type(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
400 401
            inputs[ipt.name] = val

402
        outputs = dict()
Y
Yu Yang 已提交
403
        out = helper.create_tmp_variable(dtype=dtype)
404 405 406
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
407
        helper.append_op(
408
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
409
        return helper.append_activation(out)
Y
Yu Yang 已提交
410 411 412

    func.__name__ = op_type
    globals()[op_type] = func
413
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
414 415 416 417 418
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
419
_create_op_func_('mul')
Q
Qiao Longfei 已提交
420
_create_op_func_('elementwise_add')
421
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
422
_create_op_func_('reshape')
Y
Yu Yang 已提交
423 424
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
425 426 427 428
_create_op_func_('reshape')
_create_op_func_('transpose')


429
def cast(x, data_type, main_program=None):
430 431 432 433
    """
    This function takes in the input with input_data_type
    and casts it to the output_data_type as the output.
    """
Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442 443 444
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


445
def concat(input, axis, main_program=None, startup_program=None):
446 447 448 449
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
450
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
451
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
452 453 454 455 456 457 458 459
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


460
def sums(input, main_program=None, startup_program=None):
461 462 463 464
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
465 466
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
467
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
468 469 470
    return out


Q
Qiao Longfei 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     param_initializer=None,
                     main_program=None,
                     startup_program=None):
    def _get_default_param_initializer():
        return XavierInitializer()

    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
        initializer=param_initializer or _get_default_param_initializer())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
Yu Yang 已提交
506
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
507 508 509 510 511 512 513 514 515
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


516 517
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
518
                     level=0,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
    out_true = helper.create_tmp_variable(dtype=input.data_type)
    out_false = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
540
                     level=0,
541 542 543
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
Y
Yu Yang 已提交
544
    out = helper.create_tmp_variable(dtype=in_true.data_type)
545 546 547 548 549 550 551 552 553 554 555
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


556
def cos_sim(X, Y, **kwargs):
557 558 559 560
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
561 562 563 564
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
565 566 567 568 569 570 571
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
572
    return out
D
dzhwinter 已提交
573 574


Y
Yu Yang 已提交
575
def cross_entropy(input, label, **kwargs):
576 577 578
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
579 580 581 582 583 584 585 586 587 588 589 590
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
591 592 593 594
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
595 596 597 598 599 600 601 602 603 604
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
605
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
606
    return square_out
607 608


F
fengjiayi 已提交
609
def accuracy(input, label, k=1, **kwargs):
610 611 612 613
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
614 615 616 617 618 619 620 621 622 623
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
D
Dong Zhihong 已提交
624 625 626
    acc_out = helper.create_tmp_variable(dtype="float32")
    correct = helper.create_tmp_variable(dtype="int64")
    total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
627 628
    helper.append_op(
        type="accuracy",
武毅 已提交
629 630 631 632 633
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
634 635 636 637 638
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
639 640 641
    return acc_out


D
dzhwinter 已提交
642 643 644
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
645
                  filter_stride=1,
D
dzhwinter 已提交
646 647
                  padding=None,
                  bias_attr=None,
648
                  bias_initializer=None,
D
dzhwinter 已提交
649
                  param_attr=None,
650
                  param_initializer=None,
C
chengduoZH 已提交
651
                  act=None,
652 653
                  main_program=None,
                  startup_program=None):
654 655 656 657 658
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
659 660 661 662 663 664 665

    def _get_default_bias_initializer():
        return ConstantInitializer()

    def _get_default_param_initializer():
        return XavierInitializer()

D
dzhwinter 已提交
666 667 668 669 670 671 672
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

673 674 675 676 677
    if param_initializer is None:
        param_initializer = _get_default_param_initializer()
    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

D
dzhwinter 已提交
678
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
679
    filter = helper.create_parameter(
680 681 682 683
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=param_initializer)
D
dzhwinter 已提交
684 685 686 687 688 689
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
690
            'Filter': [filter],
D
dzhwinter 已提交
691 692 693
        },
        outputs={"Out": pre_bias},
        attrs={
694
            'contextStride': filter_stride,
695
            'contextStart': -int(filter_size / 2),
696
            'contextLength': filter_size
D
dzhwinter 已提交
697
        })
698
    pre_act = helper.append_bias_op(pre_bias, bias_initializer)
D
dzhwinter 已提交
699 700 701
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
702 703
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
704
           filter_size,
F
fengjiayi 已提交
705 706
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
707
           groups=None,
F
fengjiayi 已提交
708
           param_attr=None,
709
           param_initializer=None,
C
chengduoZH 已提交
710 711 712 713
           bias_attr=None,
           bias_initializer=None,
           act=None,
           name=None,
714 715
           main_program=None,
           startup_program=None):
716 717 718 719 720 721 722
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
723 724 725 726 727 728 729 730

    def _get_default_bias_initializer():
        return ConstantInitializer()

    def _get_default_param_initializer(filter_size, num_channels):
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return NormalInitializer(0.0, std, 0)

731 732 733 734 735 736 737
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
738
        if num_channels % groups != 0:
739 740 741
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
742 743 744 745 746 747 748
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

749 750
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
751

752 753 754 755 756 757
    if param_initializer is None:
        param_initializer = _get_default_param_initializer(filter_size,
                                                           num_channels)
    if bias_initializer is None:
        bias_initializer = _get_default_bias_initializer()

758
    filter = helper.create_parameter(
759 760 761
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
762
        initializer=param_initializer)
763 764 765 766 767 768 769 770 771 772 773 774 775
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

776 777
    pre_act = helper.append_bias_op(
        pre_bias, bias_initializer, dim_start=1, dim_end=2)
778 779

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
780 781


D
dzhwinter 已提交
782
def sequence_pool(input, pool_type, **kwargs):
783 784 785 786 787
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
788
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
789 790
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
791
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
792 793 794

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
795 796 797
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
798
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
799 800 801 802

    return pool_out


F
fengjiayi 已提交
803 804 805 806 807 808
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
809 810
           main_program=None,
           startup_program=None):
811 812 813 814
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
815 816 817 818 819 820 821 822 823 824 825
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
826
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
827 828 829 830 831 832 833 834
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
835
            "pooling_type": pool_type,
F
fengjiayi 已提交
836
            "ksize": pool_size,
C
chengduoZH 已提交
837
            "global_pooling": global_pooling,
F
fengjiayi 已提交
838 839 840 841 842
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
843 844


Q
Qiao Longfei 已提交
845 846 847 848
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
849
               epsilon=1e-05,
Q
Qiao Longfei 已提交
850 851 852
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
853 854
               main_program=None,
               startup_program=None):
855 856 857 858
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
875 876 877 878
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
879
    bias = helper.create_parameter(
880 881 882 883 884 885 886 887 888 889 890 891 892 893
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.data_type)
    sentence_scores = helper.create_tmp_variable(dtype=ids.data_type)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
945 946
class BlockGuard(object):
    """
947 948 949 950
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
951 952
    """

953 954
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
955
            raise TypeError("BlockGuard takes a program")
956
        self.main_program = main_program
Y
Yu Yang 已提交
957 958

    def __enter__(self):
959
        self.main_program.create_block()
Y
Yu Yang 已提交
960 961

    def __exit__(self, exc_type, exc_val, exc_tb):
962
        self.main_program.rollback()
Y
Yu Yang 已提交
963 964 965 966 967 968
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
969 970 971 972 973 974
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
975 976
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
977
            raise TypeError("StaticRNNGuard takes a StaticRNN")
978
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
979 980 981 982 983 984 985
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
986 987
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
988 989 990 991 992 993 994
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
1016 1017 1018 1019 1020 1021
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
1022 1023 1024 1025
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

1026 1027 1028
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

1043 1044 1045 1046 1047 1048 1049
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
1050 1051 1052 1053 1054 1055 1056 1057 1058
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1059 1060
        self._assert_in_rnn_block_('memory')
        if init is None:
1061
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1062
                raise ValueError(
1063
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1064 1065 1066
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1067 1068 1069 1070
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
1071 1072

            parent_block.append_op(
1073 1074
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1075 1076 1077
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1078 1079 1080 1081
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1099 1100
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1101 1102 1103 1104 1105
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
1106
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121 1122
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
1123
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1124 1125 1126
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1140
        prog = self.helper.main_program
Y
Yu Yang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1157 1158
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1222 1223


Y
Yang Yang(Tony) 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
        if cond.data_type != core.DataType.BOOL:
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1300 1301 1302 1303 1304 1305
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1306 1307 1308 1309
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

        data_type = x.data_type
        c = helper.create_tmp_variable(data_type)
        h = helper.create_tmp_variable(data_type)

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1344
def lod_rank_table(x, level=0, main_program=None):
1345 1346 1347 1348
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1359 1360


1361
def lod_tensor_to_array(x, table, main_program=None):
1362 1363 1364 1365
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1366 1367 1368
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1369 1370
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=x.data_type)
1371 1372 1373 1374 1375 1376 1377 1378 1379
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1380 1381 1382 1383
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1394
def fill_constant(shape, dtype, value, main_program=None, startup_program=None):
1395 1396 1397 1398 1399
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1400
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1440
def ones(shape, dtype, main_program=None):
1441 1442 1443 1444
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1445 1446 1447 1448
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1449 1450 1451 1452
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1453 1454 1455
    return fill_constant(value=0.0, **locals())


1456
def increment(x, value=1.0, in_place=True, main_program=None):
1457 1458 1459 1460 1461
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1462
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1463
    if not in_place:
1464
        out = helper.create_tmp_variable(dtype=x.data_type)
Y
Yang Yang(Tony) 已提交
1465 1466
    else:
        out = x
Y
Yu Yang 已提交
1467 1468 1469
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1470
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1471
        attrs={'step': value})
Y
Yang Yu 已提交
1472
    return out
Y
Yu Yang 已提交
1473 1474 1475


def array_write(x, i, array=None, main_program=None):
1476 1477 1478 1479
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1494 1495 1496 1497 1498 1499 1500 1501
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1502
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1514
def array_read(array, i, main_program=None):
1515 1516 1517 1518
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1531 1532 1533


def shrink_memory(x, i, table, main_program=None):
1534 1535 1536 1537
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1538 1539 1540
    helper = LayerHelper('shrink_memory', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
Y
Yang Yu 已提交
1541
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1542 1543 1544 1545 1546 1547
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1548 1549 1550


def array_length(array, main_program=None):
1551 1552 1553 1554
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1555 1556 1557 1558 1559 1560
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1580 1581 1582 1583 1584
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1585 1586 1587 1588 1589
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1590 1591 1592 1593
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
                dtype=x.data_type)

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
                dtype=x.data_type)
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
                dtype=each_out.data_type)
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist