test_detection.py 12.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
20
import unittest
21 22


23
class TestDetection(unittest.TestCase):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
39
                shape=[2, 10, 4],
40 41 42 43
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
44
                shape=[2, 10, 20],
45 46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
50
            self.assertEqual(out.shape[-1], 6)
51
        print(str(program))
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

86
        print(str(program))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
110
        print(str(program))
111 112


113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        box, var = layers.prior_box(
            input=conv1,
            image=images,
            min_sizes=[100.0],
            aspect_ratios=[1.],
            flip=True,
            clip=True)
        assert len(box.shape) == 4
        assert box.shape == var.shape
        assert box.shape[3] == 4


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
        rpn_rois = layers.data(
            name='rpn_rois',
            shape=[4, 4],
            dtype='float32',
            lod_level=1,
            append_batch_size=False)
        gt_classes = layers.data(
            name='gt_classes',
            shape=[6],
            dtype='int32',
            lod_level=1,
            append_batch_size=False)
        gt_boxes = layers.data(
            name='gt_boxes',
            shape=[6, 4],
            dtype='float32',
            lod_level=1,
            append_batch_size=False)
        im_scales = layers.data(
            name='im_scales',
            shape=[1],
            dtype='float32',
            lod_level=1,
            append_batch_size=False)
        class_nums = 5
        rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels(
            rpn_rois=rpn_rois,
            gt_classes=gt_classes,
            gt_boxes=gt_boxes,
            im_scales=im_scales,
            batch_size_per_im=2,
            fg_fraction=0.5,
            fg_thresh=0.5,
            bg_thresh_hi=0.5,
            bg_thresh_lo=0.0,
            bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
            class_nums=class_nums)
        assert rois.shape[1] == 4
        assert rois.shape[0] == labels_int32.shape[0]
        assert rois.shape[0] == bbox_targets.shape[0]
        assert rois.shape[0] == bbox_inside_weights.shape[0]
        assert rois.shape[0] == bbox_outside_weights.shape[0]
        assert bbox_targets.shape[1] == 4 * class_nums
        assert bbox_inside_weights.shape[1] == 4 * class_nums
        assert bbox_outside_weights.shape[1] == 4 * class_nums


C
chengduoZH 已提交
198 199
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
200
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
201
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
202 203 204 205

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
206
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
207 208

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
209 210
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
211 212 213 214 215
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
216

C
chengduoZH 已提交
217
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
218 219
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
220
            num_classes=21,
C
chengduoZH 已提交
221 222 223 224 225 226 227
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
228

C
chengduoZH 已提交
229
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
230 231


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

247
            map_out = layers.detection_map(detect_res, label, 21)
248 249
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
250
        print(str(program))
251 252


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
            loc_shape = [10, 50, 4]
            score_shape = [10, 50, 2]
            anchor_shape = [50, 4]

            loc = layers.data(
                name='loc',
                shape=loc_shape,
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=score_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')

            predicted_scores, predicted_location, target_label, target_bbox = layers.rpn_target_assign(
                loc=loc,
                scores=scores,
                anchor_box=anchor_box,
                anchor_var=anchor_var,
                gt_box=gt_box,
                rpn_batch_size_per_im=256,
                fg_fraction=0.25,
                rpn_positive_overlap=0.7,
                rpn_negative_overlap=0.3)

            self.assertIsNotNone(predicted_scores)
            self.assertIsNotNone(predicted_location)
            self.assertIsNotNone(target_label)
            self.assertIsNotNone(target_bbox)
            assert predicted_scores.shape[1] == 2
            assert predicted_location.shape[1] == 4
            assert predicted_location.shape[1] == target_bbox.shape[1]

        print(str(program))


306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
        data_shape = [20, 64, 64]
        images = fluid.layers.data(
            name='images', shape=data_shape, dtype='float32')
        im_info = fluid.layers.data(
            name='im_info', shape=[1, 3], dtype='float32')
        anchors, variances = fluid.layers.anchor_generator(
            name='anchor_generator',
            input=images,
            anchor_sizes=[32, 64],
            aspect_ratios=[1.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        num_anchors = anchors.shape[2]
        scores = fluid.layers.data(
            name='scores', shape=[1, num_anchors, 8, 8], dtype='float32')
        bbox_deltas = fluid.layers.data(
            name='bbox_deltas',
            shape=[1, num_anchors * 4, 8, 8],
            dtype='float32')
        rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
            name='generate_proposals',
            scores=scores,
            bbox_deltas=bbox_deltas,
            im_info=im_info,
            anchors=anchors,
            variances=variances,
            pre_nms_top_n=6000,
            post_nms_top_n=1000,
            nms_thresh=0.5,
            min_size=0.1,
            eta=1.0)
        self.assertIsNotNone(rpn_rois)
        self.assertIsNotNone(rpn_roi_probs)
        print(rpn_rois.shape)


345 346
if __name__ == '__main__':
    unittest.main()