ctc_align_op.h 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string.h>
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
21

W
wanghaoshuang 已提交
22 23 24 25 26 27 28
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
29
class CTCAlignKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
30 31 32 33 34 35
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
    bool merge_repeated = ctx.Attr<bool>("merge_repeated");
W
wanghaoshuang 已提交
36
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
37
    auto input_dims = input->dims();
W
wanghaoshuang 已提交
38
    const T* input_data = input->data<T>();
39 40 41

    // support tensor input, no lod information
    if (input->lod().empty()) {
42 43
      size_t padding_value =
          static_cast<size_t>(ctx.Attr<int>("padding_value"));
44 45 46 47 48 49
      auto* input_length = ctx.Input<LoDTensor>("InputLength");
      const T* input_length_data = input_length->data<T>();

      auto* output_length = ctx.Output<LoDTensor>("OutputLength");
      T* output_length_data = output_length->mutable_data<T>(ctx.GetPlace());

50 51 52 53
      for (size_t batch_id = 0; batch_id < (unsigned)input_dims[0];
           batch_id++) {
        T prev_token = -1;
        size_t output_idx = 0;
54
        for (size_t i = 0; i < (unsigned)input_length_data[batch_id]; i++) {
55 56 57 58 59 60 61 62
          size_t input_ind = batch_id * input_dims[1] + i;
          if ((unsigned)input_data[input_ind] != blank &&
              !(merge_repeated && input_data[input_ind] == prev_token)) {
            output_data[batch_id * input_dims[1] + output_idx] =
                input_data[input_ind];
            ++output_idx;
          }
          prev_token = input_data[input_ind];
W
wanghaoshuang 已提交
63
        }
64
        output_length_data[batch_id] = output_idx;
65
        for (size_t j = output_idx; j < (unsigned)input_dims[1]; j++)
66
          output_data[batch_id * input_dims[1] + j] = padding_value;
W
wanghaoshuang 已提交
67
      }
68 69 70
    } else {
      const size_t level = 0;
      auto input_lod = framework::ToAbsOffset(input->lod());
71

72 73 74
      // check input dims and lod
      PADDLE_ENFORCE_EQ(
          input_dims[0], static_cast<int64_t>(input_lod[level].back()),
75 76 77 78 79
          platform::errors::InvalidArgument(
              "The first dimension %d of CTCAlign operator Input(Input) should "
              "be equal to "
              "the sum of all sequences' lengths %d.",
              input_dims[0], static_cast<int64_t>(input_lod[level].back())));
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

      const size_t num_sequences = input_lod[level].size() - 1;

      // merge repeated tokens and delete blank
      size_t output_idx = 0;
      std::vector<size_t> output_lod0(1, 0);
      for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
        T prev_token = -1;
        for (size_t i = input_lod[level][seq_idx];
             i < input_lod[level][seq_idx + 1]; ++i) {
          if ((unsigned)input_data[i] != blank &&
              !(merge_repeated && input_data[i] == prev_token)) {
            output_data[output_idx] = input_data[i];
            ++output_idx;
          }
          prev_token = input_data[i];
        }
        output_lod0.push_back(output_idx);
      }

      // set output lod
      framework::LoD output_lod;
      output_lod.push_back(output_lod0);
      output->set_lod(output_lod);
      // resize output dims
      output->Resize({static_cast<int64_t>(output_lod0.back()), 1});
      // for empty sequence
      if (output_lod0.back() == 0) {
        output->Resize({1, 1});
        output_data = output->mutable_data<T>(ctx.GetPlace());
        output_data[0] = -1;
      }
112
    }
W
wanghaoshuang 已提交
113 114 115 116 117
  }
};

}  // namespace operators
}  // namespace paddle