common.py 55.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
17
from ...fluid.dygraph import Flatten  #DEFINE_ALIAS
18 19
from ...fluid.dygraph import layers
from .. import functional as F
20
from ...fluid.framework import _dygraph_tracer
21

C
ceci3 已提交
22
__all__ = [
23 24
    'Embedding',
    'Linear',
25
    'Upsample',
L
littletomatodonkey 已提交
26
    'Pad1D',
27
    'Pad2D',
L
littletomatodonkey 已提交
28
    'Pad3D',
X
xiaoting 已提交
29 30
    'UpsamplingNearest2D',
    'UpsamplingBilinear2D',
31 32
    'CosineSimilarity',
    'Dropout',
C
cnn 已提交
33 34
    'Dropout2D',
    'Dropout3D',
35 36
    'Bilinear',
    'AlphaDropout',
C
ceci3 已提交
37
]
38 39


40
class Linear(layers.Layer):
41
    r"""
42 43 44

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
45 46 47

    .. math::

48
        Out = XW + b
49

50
    where :math:`W` is the weight and :math:`b` is the bias.
51

52 53 54 55 56 57 58
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
59 60

    Parameters:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
84 85 86 87 88

    Examples:
        .. code-block:: python

          import paddle
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = F.linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

139 140 141 142 143
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)

144

145
class Upsample(layers.Layer):
146 147
    """
    This op resizes a batch of images.
148

149 150 151
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
152 153
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
154
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
155

156
    Supporting resample methods:
157 158 159 160 161 162
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
163 164 165
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

166 167 168 169 170 171 172 173 174
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
175

176 177 178 179
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
180 181 182 183 184

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
185
    align_corners and align_mode are optional parameters,the calculation method
186 187
    of interpolation can be selected by them.

188 189 190 191 192 193
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

194 195 196 197
    Example:

    .. code-block:: text

198
        For scale_factor:
199 200 201 202 203
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

204 205 206 207 208 209 210 211 212 213
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
214 215 216 217 218 219 220 221 222 223 224 225 226 227

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
228

229 230 231
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
232

233 234 235 236 237
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
238

239 240 241 242 243 244 245 246 247 248 249 250
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

273 274
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
275

276 277
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
278

279 280
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
281

282 283
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
284

285 286
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
287

288
    Parameters:
X
xiaoting 已提交
289
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
290
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
291
        size (list|tuple|Tensor|None): Output shape of image resize
292 293
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
X
xiaoting 已提交
294 295
             Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
             If a Tensor , its dimensions size should be a 1.
296 297 298
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
299
             Default: None.
300 301
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
302 303 304
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
305 306 307 308
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
309
        data_format (str, optional): Specify the data format of the input, and the data format of the output
310
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
311 312 313
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
314 315 316
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
317 318 319
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
320
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
321
    Raises:
X
xiaoting 已提交
322
        TypeError: size should be a list or tuple or Tensor.
323 324 325 326 327 328 329 330 331 332
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
333 334
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
335
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
336 337 338

    Examples:
        .. code-block:: python
C
Chen Long 已提交
339
            
340
            import paddle
X
xiaoting 已提交
341
            import paddle.nn as nn
342
            import numpy as np
X
xiaoting 已提交
343

344
            input_data = np.random.rand(2,3,6,10).astype("float32")
345
            upsample_out  = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
346 347 348 349 350 351

            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]

352 353 354
    """

    def __init__(self,
355 356 357 358
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
X
xiaoting 已提交
359 360 361
                 align_mode=0,
                 data_format='NCHW',
                 name=None):
362
        super(Upsample, self).__init__()
363 364 365
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
366 367 368
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
369
        self.name = name
370

X
xiaoting 已提交
371
    def forward(self, x):
372
        out = F.interpolate(
X
xiaoting 已提交
373
            x,
374 375 376
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
377 378
            align_corners=self.align_corners,
            align_mode=self.align_mode,
X
xiaoting 已提交
379 380
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
381 382 383

        return out

384 385 386 387 388 389 390 391 392 393
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
            main_str, self.mode, self.align_corners, self.align_mode,
            self.data_format, name_str)

X
xiaoting 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

class UpsamplingNearest2D(layers.Layer):
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
             Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
438
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingNearest2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='nearest',
            align_corners=False,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)

        return out

470 471 472 473 474 475 476 477 478
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

class UpsamplingBilinear2D(layers.Layer):
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
             Default: None. If a list, each element can be an integer or a Tensor  of shape: [1].
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
524
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingBilinear2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='bilinear',
            align_corners=True,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
553 554 555

        return out

556 557 558 559 560 561 562 563 564
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
565

566
class Bilinear(layers.Layer):
567
    r"""
568 569 570 571

    This layer performs bilinear on two inputs.

    .. math::
572

573
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
589
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
590 591 592
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
593
           If it is set to None, the bias is initialized zero. The default value is None.
594 595 596 597 598 599 600 601 602
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
603
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

    def __init__(self,
                 in1_features,
                 in2_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
            self._out_features, self._in1_features, self._in2_features
        ]
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False)
        bias_shape = [1, self._out_features]
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True)

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

654 655 656 657 658 659
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
            self._in1_features, self._in2_features, self._out_features,
            self._dtype, name_str)

660

661 662 663 664
class Dropout(layers.Layer):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
665
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
666 667 668 669
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
670 671

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        axis (int | list): The axis along which the dropout is performed. Default None.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
687
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
688 689 690 691 692

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

693

694 695
    Examples:
        .. code-block:: python
696

697 698 699 700 701 702 703 704 705
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
706 707 708
            print(x)
            print(y_train)
            print(y_test)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name)
        return out

729 730 731 732 733
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, axis={}, mode={}{}'.format(self.p, self.axis, self.mode,
                                                 name_str)

734

C
cnn 已提交
735
class Dropout2D(layers.Layer):
736 737 738 739
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
740
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
741
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
742 743 744

    See ``paddle.nn.functional.dropout2d`` for more details.

745 746
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

747 748
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
749
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
750 751 752 753 754 755
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

756

757 758
    Examples:
        .. code-block:: python
759

760 761 762 763 764
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
765
            m = paddle.nn.Dropout2D(p=0.5)
766 767 768
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
769 770 771
            print(x)
            print(y_train)
            print(y_test)
772 773 774
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
C
cnn 已提交
775
        super(Dropout2D, self).__init__()
776 777 778 779 780 781 782 783 784 785 786 787 788 789

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

790 791 792 793 794
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

795

C
cnn 已提交
796
class Dropout3D(layers.Layer):
797 798 799 800
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
801
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
802
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
803 804 805

    See ``paddle.nn.functional.dropout3d`` for more details.

806 807
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

808 809
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
810
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
811 812 813 814 815 816
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

817

818 819
    Examples:
        .. code-block:: python
820

821 822 823 824 825
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
826
            m = paddle.nn.Dropout3D(p=0.5)
827 828 829
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
830 831 832
            print(x)
            print(y_train)
            print(y_test)
833 834 835
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
C
cnn 已提交
836
        super(Dropout3D, self).__init__()
837 838 839 840 841 842 843 844 845 846 847 848 849 850

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

851 852 853 854 855
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
class AlphaDropout(layers.Layer):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
879

880 881 882 883 884 885 886 887 888
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
889 890
            print(x)
            print(y_train)
891
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
892
            print(y_test)
893 894 895 896 897 898 899 900 901 902 903 904
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name)
        return out

905 906 907 908
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}{}'.format(self.p, name_str)

909

L
littletomatodonkey 已提交
910
class Pad1D(layers.Layer):
L
littletomatodonkey 已提交
911
    """
L
littletomatodonkey 已提交
912 913 914
    This interface is used to construct a callable object of the ``Pad1D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
915 916 917 918

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
L
littletomatodonkey 已提交
919 920 921 922 923 924
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
925 926 927 928 929
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
930 931

    Returns:
L
littletomatodonkey 已提交
932 933 934 935 936 937 938 939
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
L
littletomatodonkey 已提交
940
            mode = "constant"
L
littletomatodonkey 已提交
941 942 943 944 945 946
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
947

L
littletomatodonkey 已提交
948 949 950 951 952 953
            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
954 955 956
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
957
            result = my_pad(data)
L
littletomatodonkey 已提交
958
            print(result)
L
littletomatodonkey 已提交
959 960 961 962
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

L
littletomatodonkey 已提交
963 964 965 966 967 968 969
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCL",
                 name=None):
        super(Pad1D, self).__init__()
L
littletomatodonkey 已提交
970
        self._pad = padding
L
littletomatodonkey 已提交
971
        self._mode = mode
L
littletomatodonkey 已提交
972
        self._value = value
L
littletomatodonkey 已提交
973
        self._data_format = data_format
L
littletomatodonkey 已提交
974 975 976 977 978 979 980 981 982 983
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

984 985 986 987 988
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
989

L
littletomatodonkey 已提交
990
class Pad2D(layers.Layer):
L
littletomatodonkey 已提交
991
    """
L
littletomatodonkey 已提交
992 993 994 995
    This interface is used to construct a callable object of the ``Pad2D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
996 997 998 999

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
L
littletomatodonkey 已提交
1000 1001 1002 1003 1004 1005
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1006 1007 1008 1009 1010
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1011 1012

    Returns:
L
littletomatodonkey 已提交
1013 1014 1015 1016 1017 1018 1019 1020
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
L
littletomatodonkey 已提交
1021
            mode = "constant"
L
littletomatodonkey 已提交
1022 1023 1024 1025 1026 1027
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
1028

L
littletomatodonkey 已提交
1029 1030 1031 1032 1033
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1034 1035 1036
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1037
            result = my_pad(data)
L
littletomatodonkey 已提交
1038
            print(result)
L
littletomatodonkey 已提交
1039 1040 1041 1042 1043 1044 1045
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

L
littletomatodonkey 已提交
1046 1047 1048 1049 1050 1051 1052
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCHW",
                 name=None):
        super(Pad2D, self).__init__()
L
littletomatodonkey 已提交
1053
        self._pad = padding
L
littletomatodonkey 已提交
1054
        self._mode = mode
L
littletomatodonkey 已提交
1055 1056 1057 1058 1059 1060 1061 1062
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1063
                     value=self._value,
L
littletomatodonkey 已提交
1064 1065 1066
                     data_format=self._data_format,
                     name=self._name)

1067 1068 1069 1070 1071
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1072

L
littletomatodonkey 已提交
1073
class Pad3D(layers.Layer):
L
littletomatodonkey 已提交
1074
    """
L
littletomatodonkey 已提交
1075 1076 1077 1078
    This interface is used to construct a callable object of the ``Pad3D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1079 1080 1081 1082

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
L
littletomatodonkey 已提交
1083 1084 1085 1086 1087 1088
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1089 1090 1091 1092 1093
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1094 1095

    Returns:
L
littletomatodonkey 已提交
1096 1097 1098 1099 1100 1101 1102 1103
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
L
littletomatodonkey 已提交
1104
            mode = "constant"
L
littletomatodonkey 已提交
1105 1106 1107 1108 1109 1110
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
1111

L
littletomatodonkey 已提交
1112 1113 1114 1115 1116
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1117 1118 1119
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1120
            result = my_pad(data)
L
littletomatodonkey 已提交
1121
            print(result)
L
littletomatodonkey 已提交
1122 1123 1124 1125 1126 1127 1128
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

L
littletomatodonkey 已提交
1129 1130 1131 1132 1133 1134 1135
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCDHW",
                 name=None):
        super(Pad3D, self).__init__()
L
littletomatodonkey 已提交
1136
        self._pad = padding
L
littletomatodonkey 已提交
1137
        self._mode = mode
L
littletomatodonkey 已提交
1138 1139 1140 1141 1142 1143 1144 1145
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1146
                     value=self._value,
L
littletomatodonkey 已提交
1147 1148 1149
                     data_format=self._data_format,
                     name=self._name)

1150 1151 1152 1153 1154
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1155 1156 1157

class CosineSimilarity(layers.Layer):
    """
1158
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1159 1160

    Parameters:
1161
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1162
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1163
    Returns:
L
littletomatodonkey 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1178
                axis = 1
L
littletomatodonkey 已提交
1179 1180 1181 1182 1183
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1184

L
littletomatodonkey 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1195
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1196
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1197
            print(result)
L
littletomatodonkey 已提交
1198 1199 1200
            # [0.99806249 0.9817672  0.94987036]
    """

1201
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1202
        super(CosineSimilarity, self).__init__()
1203
        self._axis = axis
L
littletomatodonkey 已提交
1204 1205 1206
        self._eps = eps

    def forward(self, x1, x2):
1207
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1208

1209 1210 1211
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1212 1213

class Embedding(layers.Layer):
1214
    r"""
T
tangwei12 已提交
1215 1216 1217 1218
    **Embedding Layer**

    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1219
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1220
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1221
    input :attr:`num_embeddings` and attr:`embedding_dim`.
T
tangwei12 已提交
1222 1223 1224 1225

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

T
tangwei12 已提交
1226
    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
T
tangwei12 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
T
tangwei12 已提交
1254
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
T
tangwei12 已提交
1265
            In these case, sparse must be False. Default: False.
T
tangwei12 已提交
1266
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1267
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1268 1269
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1270 1271
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
T
tangwei12 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1286 1287 1288 1289 1290
            import paddle
            import numpy as np

            x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
T
tangwei12 已提交
1291

T
tangwei12 已提交
1292 1293 1294 1295 1296 1297 1298
            x = paddle.to_tensor(x_data, stop_gradient=False)
            y = paddle.to_tensor(y_data, stop_gradient=False)

            embedding = paddle.nn.Embedding(10, 3, sparse=True)

            w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
            embedding.weight.set_value(w0)
T
tangwei12 已提交
1299

T
tangwei12 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()

            # weight.shape = [10, 3]

            # x.data = [[3],[4],[5]]
            # x.shape = [3, 1]

            # out.data = [[2,2,2], [2,2,2], [2,2,2]]
            # out.shape = [3, 1, 3]
            out=embedding(x)
            out.backward()
            adam.step()
T
tangwei12 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

    """

    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 padding_idx=None,
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(Embedding, self).__init__()
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1328
        self._padding_idx = padding_idx
T
tangwei12 已提交
1329 1330 1331 1332 1333 1334 1335

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1336 1337 1338 1339
        padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
            num_embeddings + padding_idx)

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
T
tangwei12 已提交
1340 1341 1342
            raise ValueError("padding_idx must be within [-{}, {})".format(
                num_embeddings, num_embeddings))

T
tangwei12 已提交
1343 1344 1345 1346 1347 1348
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
T
tangwei12 已提交
1349
        self.weight = self.create_parameter(
T
tangwei12 已提交
1350 1351 1352 1353 1354 1355 1356 1357
            attr=self._weight_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, x):
        return F.embedding(
            x,
T
tangwei12 已提交
1358
            weight=self.weight,
T
tangwei12 已提交
1359 1360 1361
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name)
1362 1363 1364 1365 1366 1367 1368 1369 1370

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)