test_word2vec.py 8.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2
# # Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
3 4
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
5
#
D
dzhwinter 已提交
6
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
7
#
D
dzhwinter 已提交
8 9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
QI JUN 已提交
14
import paddle.v2 as paddle
15
import paddle.v2.fluid as fluid
Y
Yang Yu 已提交
16
import unittest
Y
Yang Yu 已提交
17
import os
18
import numpy as np
19 20
import math
import sys
Q
QI JUN 已提交
21

Y
Yang Yu 已提交
22

23 24 25 26 27 28 29 30 31 32
def create_random_lodtensor(lod, place, low, high):
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
Y
Yang Yu 已提交
33 34
        return

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict) - 1

    # Setup input, by creating 4 words, and setting up lod required for 
    # lookup_table_op
    lod = [0, 1]
    first_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
    second_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
    third_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
    fourth_word = create_random_lodtensor(lod, place, low=0, high=dict_size)

    assert feed_target_names[0] == 'firstw'
    assert feed_target_names[1] == 'secondw'
    assert feed_target_names[2] == 'thirdw'
    assert feed_target_names[3] == 'forthw'

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    results = exe.run(inference_program,
                      feed={
                          feed_target_names[0]: first_word,
                          feed_target_names[1]: second_word,
                          feed_target_names[2]: third_word,
                          feed_target_names[3]: fourth_word
                      },
                      fetch_list=fetch_targets,
                      return_numpy=False)
    print(results[0].lod())
    np_data = np.array(results[0])
    print("Inference Shape: ", np_data.shape)
    print("Inference results: ", np_data)


def train(use_cuda, is_sparse, parallel, save_dirname):
Y
Yang Yu 已提交
79 80 81 82 83
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
        avg_cost = fluid.layers.mean(x=cost)
122
        return avg_cost, predict_word
Y
Yang Yu 已提交
123 124 125 126 127 128 129 130 131 132

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

Y
Yang Yu 已提交
133
    if not parallel:
134
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
135 136 137 138 139
            [first_word, second_word, third_word, forth_word, next_word])
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
140
            avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
141 142 143 144 145 146 147
                map(pd.read_input, [
                    first_word, second_word, third_word, forth_word, next_word
                ]))
            pd.write_output(avg_cost)

        avg_cost = fluid.layers.mean(x=pd())

Y
Yang Yu 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        for data in train_reader():
            avg_cost_np = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data),
                                  fetch_list=[avg_cost])
            if avg_cost_np[0] < 5.0:
168 169 170 171
                if save_dirname is not None:
                    fluid.io.save_inference_model(save_dirname, [
                        'firstw', 'secondw', 'thirdw', 'forthw'
                    ], [predict_word], exe)
Y
Yang Yu 已提交
172
                return
173 174 175
            if math.isnan(float(avg_cost_np[0])):
                sys.exit("got NaN loss, training failed.")

Y
Yang Yu 已提交
176 177 178
    raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))


179 180 181 182 183 184 185 186
def main(use_cuda, is_sparse, parallel):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    save_dirname = "word2vec.inference.model"
    train(use_cuda, is_sparse, parallel, save_dirname)
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
187
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
188
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
189
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
190 191 192


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    pass


def inject_test_method(use_cuda, is_sparse, parallel):
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
                                        if parallel else "normal")

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                main(use_cuda=use_cuda, is_sparse=is_sparse, parallel=parallel)

209 210
    # run only 2 cases: use_cuda is either True or False
    if is_sparse == False and parallel == False:
Y
Yang Yu 已提交
211 212 213 214 215 216 217
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
218 219


Y
Yang Yu 已提交
220 221 222 223
for use_cuda in (False, True):
    for is_sparse in (False, True):
        for parallel in (False, True):
            inject_test_method(use_cuda, is_sparse, parallel)
Y
Yang Yu 已提交
224 225 226

if __name__ == '__main__':
    unittest.main()