conv_transpose_mkldnn_op.cc 10.0 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE(
        is_test == true,
        "ConvTransposeMKLDNN works only for inference!. Set is_test = True");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

49 50 51 52 53 54 55 56 57 58 59 60 61 62
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(input->dims().size(), 4,
                      "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
                      "Filter must be with 4 dimensions, i.e. OIHW");
J
Jacek Czaja 已提交
63 64

    if (bias) {
65 66 67 68 69 70 71
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
J
Jacek Czaja 已提交
72 73 74 75 76 77
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
78 79 80 81 82 83 84 85 86 87 88 89
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    auto ksize = framework::vectorize<int>(filter_data_dims);

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);
J
Jacek Czaja 已提交
90 91 92 93 94 95 96 97

    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

98 99 100 101
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto iohw_weights_tz = paddle::framework::vectorize<int>(filter->dims());
    auto weights_tz = iohw_weights_tz;

J
Jacek Czaja 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    // IOHW -> OIHW
    weights_tz[0] = iohw_weights_tz[1];
    weights_tz[1] = iohw_weights_tz[0];

    // Custom Reorder from IOHW to OIHW
    auto iohw2oihw_reorder =
        [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
      int o = iohw_weights_tz[1];
      int c = iohw_weights_tz[0];
      int h = iohw_weights_tz[2];
      int w = iohw_weights_tz[3];
      std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
                                               std::default_delete<T[]>());
      for (int i = 0; i < c; ++i) {
        for (int j = 0; j < o; ++j) {
          int in_offset = j * h * w + i * o * h * w;
          int out_offset = j * c * h * w + i * h * w;
          std::memcpy(&(reordered_filter_data.get())[out_offset],
                      &filter_data[in_offset], h * w * sizeof(T));
        }
      }

      return reordered_filter_data;
    };

    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
140
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
J
Jacek Czaja 已提交
141 142

    // Get unique name for storing MKLDNN primitives
H
hong 已提交
143

144
    const std::string key =
H
hong 已提交
145
        platform::CreateKey(src_tz, ctx.OutputName("Output"));
J
Jacek Czaja 已提交
146 147 148 149 150

    std::vector<mkldnn::primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
151 152 153
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
J
Jacek Czaja 已提交
154 155 156 157 158

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
159
    auto chosen_memory_format = MKLDNNMemoryFormat::any;
160 161 162
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
J
Jacek Czaja 已提交
163 164 165 166 167

    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
168
    std::vector<int> bias_tz;
J
Jacek Czaja 已提交
169 170 171
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

172
    platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
J
Jacek Czaja 已提交
173 174 175 176 177 178 179
    // create a deconv(conv transpose) primitive descriptor and save it for
    // usage in backward
    std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
        conv_transpose_pd;
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
    if (bias) {
180
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
J
Jacek Czaja 已提交
181
      auto bias_md = platform::MKLDNNMemDesc(
182
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
183
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
J
Jacek Czaja 已提交
184
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
185
          fuse_activation, fuse_alpha, fuse_beta, false, fwd_prop_kind);
J
Jacek Czaja 已提交
186
    } else {
187 188
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
189 190
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false,
          fwd_prop_kind);
J
Jacek Czaja 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    }

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p = handler.AcquireSrcMemory(
        user_src_md, platform::to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, platform::to_void_cast<T>(filter_data),
        is_test ? iohw2oihw_reorder : platform::user_function());

    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);

    std::shared_ptr<mkldnn::memory> dst_memory_p;

208 209
    auto output_data =
        output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
J
Jacek Czaja 已提交
210 211 212 213 214 215 216
    dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
        platform::to_void_cast<T>(output_data));

    // create convolution op primitive
    std::shared_ptr<mkldnn::deconvolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
217 218
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
J
Jacek Czaja 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, platform::to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }

    // push primitive to stream and wait until it's executed
    pipeline.push_back(*conv_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();

235 236
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
237 238 239 240 241 242 243 244 245 246
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvTransposeMKLDNNOpKernel<float>);