fleet.h 10.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
#include <random>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/distributed/communicator_common.h"
#include "paddle/fluid/distributed/service/service.h"
#include "paddle/fluid/framework/archive.h"
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/framework/io/shell.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

37 38 39 40 41 42 43 44 45
namespace paddle {
namespace framework {
class LoDTensor;
class Scope;
class SelectedRows;
class Variable;
}  // namespace framework
}  // namespace paddle

T
tangwei12 已提交
46 47 48
namespace paddle {
namespace distributed {

49 50
class PSCore;

T
tangwei12 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
using framework::LoDTensor;
using framework::Scope;
using framework::SelectedRows;
using framework::Variable;

using RpcCtxMap = std::unordered_map<std::string, CommContext>;

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pserver core dump
    sleep_seconds_before_fail_exit_ = 300;
    // pserver request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pserver connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pserver request max retry
    client2client_max_retry_ = 3;
  }

  // set client to client communication config
  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

  // Pull sparse variables from server in sync mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
89 90 91
  // is_training is true means training, false means inference, the behavior is
  // different on pserver

T
tangwei12 已提交
92 93
  void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                              uint64_t padding_id, platform::Place place,
94
                              bool is_training,
T
tangwei12 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

  // pull dense variables from server in sync mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
  void PullDenseVarsAsync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<std::future<int32_t>>* pull_dense_status,
                          bool in_cpu);

  // push dense parameters(not gradients) to server in sync mode
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names);

  void PushDenseVarsAsync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<std::future<int32_t>>* push_sparse_status,
                          float scale_datanorm, int batch_size);

  // push dense variables to server in sync mode
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  void PushSparseVarsAsync(
      const Scope& scope, const uint64_t table_id, const std::string& grad,
      std::vector<std::future<int32_t>>* push_sparse_status);
  // This is specially designed for click/show stats in server
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
      std::vector<std::future<int32_t>>* push_sparse_status,
      const int batch_size, const bool use_cvm, const bool dump_slot,
      std::vector<uint64_t>* sparse_push_keys, const bool no_cvm);

  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
      const Scope& scope, const uint64_t table_id, int fea_dim,
      uint64_t padding_id, bool scale_sparse, const std::string& accesor,
      const std::string& click_name, platform::Place place,
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status

  // init server
  void LoadSparseOnServer(const std::string& path, const std::string& meta,
                          uint32_t table_id);
  // init server
  // void InitServer(const std::string& dist_desc,
  //                 const std::vector<uint64_t>& host_sign_list, int index);
162 163
  void InitServer(
      const std::string& dist_desc,
T
tangwei12 已提交
164
      const std::vector<std::string>& host_sign_list, int index, int trainers,
165
      const std::vector<framework::ProgramDesc>& server_sub_program = {});
T
tangwei12 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  // init trainer
  void InitWorker(const std::string& dist_desc,
                  const std::vector<std::string>& host_sign_list, Scope* scope,
                  const RpcCtxMap& send_ctx,
                  const std::unordered_map<uint64_t, std::vector<std::string>>&
                      dense_varnames,
                  const std::map<std::string, std::string>& envs, int node_num,
                  int index);

  // stop server
  void StopServer();
  // finalize worker to make worker can be stop
  void FinalizeWorker();
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
  // get client info
  std::vector<uint64_t> GetClientsInfo();
  // create client to client connection
  void CreateClient2ClientConnection();
  // flush all push requests
  void ClientFlush();

  // barrier with barrier table
  void BarrierWithTable(uint32_t barrier_type);

  void PrintTableStat(const uint64_t table_id);
  // mode = 0, load all feature
  // mode = 1, load delta feature, which means load diff
  void LoadModel(const std::string& path, const int mode);
  // mode = 0, load all feature
  // mode = 1, load delta feature, which means load diff
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
206 207 208 209

  // recv table from server and save it in LodTensor
  void RecvAndSaveTable(const uint64_t table_id, const std::string& path);

T
tangwei12 已提交
210 211 212 213 214
  // clear all models, release their memory
  void ClearModel();
  // clear one table
  void ClearOneTable(const uint64_t table_id);
  // shrink sparse table
215
  void ShrinkSparseTable(int table_id, int threshold);
T
tangwei12 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  // shrink dense table
  void ShrinkDenseTable(int table_id, Scope* scope,
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);

  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
  // register client to client communication
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
  // send client to client message
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);

  // FleetWrapper singleton
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::distributed::FleetWrapper());
    }
    return s_instance_;
  }
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

  static std::shared_ptr<paddle::distributed::PSCore> pserver_ptr_;

 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
  size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
                        const framework::LoD& lod);

 protected:
  static bool is_initialized_;
  std::map<uint64_t, std::vector<paddle::distributed::Region>> _regions;
  bool scale_sparse_gradient_with_batch_size_;
  int32_t sleep_seconds_before_fail_exit_;
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace distributed
}  // end namespace paddle