new_exec.h 21.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <iostream>
#include <string>

#include <chrono>
#include <map>
#include <memory>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/new_exec_util.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"

// USE_OP(fill_constant);
// USE_OP(elementwise_add);

// using namespace std;

namespace paddle {
namespace framework {

using std::cerr;
using std::endl;

using OpKernelComputeFunc = std::function<void(const ExecutionContext&)>;
using OpKernelMap =
    std::unordered_map<OpKernelType, OpKernelComputeFunc, OpKernelType::Hash>;

framework::ProgramDesc load_from_file(const std::string& file_name) {
  std::ifstream fin(file_name, std::ios::in | std::ios::binary);
  fin.seekg(0, std::ios::end);
  std::string buffer(fin.tellg(), ' ');
  fin.seekg(0, std::ios::beg);
  fin.read(&buffer[0], buffer.size());
  fin.close();

  ProgramDesc program_desc(buffer);
  return program_desc;
}

struct OpKernelFunc {
  OpKernelComputeFunc compute_func_;
  OperatorBase* operator_base_;
};

struct VariableMetaInfo {
  int var_ref_count_;
};

struct VariableScope {
  std::vector<Variable*> var_list;
  std::map<std::string, int> name2id;
  std::vector<VariableMetaInfo> vec_meta_info_;
};

struct NextInstruction {
  std::vector<size_t> direct_run_;
};

struct EventInter {};

struct InstructionInfo {
  std::vector<size_t> dependecy_count_;
};

struct EventRun {
  EventInter event_inter;
  std::vector<size_t> same_device_run_;
  std::vector<size_t> synchronized_run;
};

struct Instruction {
  OpKernelFunc kernel_func_;
  std::map<std::string, std::vector<int>> input_index_;
  std::map<std::string, std::vector<int>> output_index_;

  std::vector<size_t> gc_check_var_list;
  NextInstruction next_instruction_;
  std::vector<EventInter> vec_event_list_;
};

struct OpFuncNode {
  // int unsed;
  std::map<std::string, std::vector<int>> input_index;
  std::map<std::string, std::vector<int>> output_index;

  OpKernelComputeFunc kernel_func_;
};

int convert(const platform::Place& place) {
  if (is_cpu_place(place)) {
    return 0;
  }
  if (is_gpu_place(place)) {
    return 1;
  }

  return -1;
}

std::vector<size_t> merge_vec(const std::vector<size_t>& first,
                              const std::vector<size_t>& second) {
  std::vector<size_t> out(first.size() + second.size());
  std::merge(first.begin(), first.end(), second.begin(), second.end(),
             out.begin());

  std::vector<size_t>::iterator it;
  it = std::unique(out.begin(), out.end());

  out.resize(std::distance(out.begin(), it));

  return out;
}

void build_variable_outer_scope(const framework::ProgramDesc& pdesc,
                                VariableScope* var_scope, Scope* outer_scope) {
  auto& global_block = pdesc.Block(0);

  for (auto& var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }
    auto v = outer_scope->Var(var->Name());

    if (var_scope->name2id.find(var->Name()) == var_scope->name2id.end()) {
      var_scope->name2id[var->Name()] = var_scope->var_list.size();
    }

    InitializeVariable(v, var->GetType());
    var_scope->var_list.push_back(v);
  }
}

void build_variable_scope(const framework::ProgramDesc& pdesc,
                          VariableScope* var_scope) {
  auto& global_block = pdesc.Block(0);

  for (auto& var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_scope->name2id.find(var->Name()) == var_scope->name2id.end()) {
      var_scope->name2id[var->Name()] = var_scope->var_list.size();
    }

    auto v = new Variable();
    InitializeVariable(v, var->GetType());
    var_scope->var_list.push_back(v);
  }
}

void build_op_func_list(const framework::ProgramDesc& pdesc,
                        std::vector<OperatorBase*>* op_list,
                        std::vector<OpFuncNode>* vec_func_list,
                        VariableScope* var_scope,
                        const platform::Place& place) {
  auto& global_block = pdesc.Block(0);

  for (auto& op : global_block.AllOps()) {
    VLOG(3) << op->Type();
    // << op->Type() << endl;

    auto& info = OpInfoMap::Instance().Get(op->Type());

    const VariableNameMap& inputs_names = op->Inputs();
    const VariableNameMap& outputs_names = op->Outputs();
    AttributeMap op_attr_map = op->GetAttrMap();

    if (info.Checker() != nullptr) {
      info.Checker()->Check(&op_attr_map);
    }
    auto op_base =
        info.Creator()(op->Type(), inputs_names, outputs_names, op_attr_map);

    OpFuncNode op_func_node;

    VariableValueMap ins_map;
    std::map<std::string, std::vector<int>> ins_name2id;
    for (auto& var_name_item : inputs_names) {
      std::vector<Variable*> input_vars;
      std::vector<int> vec_ids;
      input_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        input_vars.push_back(var_scope->var_list[it->second]);
        vec_ids.push_back(it->second);
      }
      ins_map[var_name_item.first] = input_vars;
      ins_name2id[var_name_item.first] = vec_ids;
    }

    VariableValueMap outs_map;
    std::map<std::string, std::vector<int>> outs_name2id;
    for (auto& var_name_item : outputs_names) {
      std::vector<Variable*> output_vars;
      std::vector<int> vec_ids;
      output_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        output_vars.push_back(var_scope->var_list[it->second]);
        vec_ids.push_back(it->second);
      }
      outs_map[var_name_item.first] = output_vars;
      outs_name2id[var_name_item.first] = vec_ids;
    }

    op_func_node.input_index = ins_name2id;
    op_func_node.output_index = outs_name2id;
    RuntimeContext runtime_context({}, {});
    runtime_context.inputs.swap(ins_map);
    runtime_context.outputs.swap(outs_map);
    RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
    static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
        &infer_shape_ctx);
    auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op->Type());
    PADDLE_ENFORCE_NE(
        kernels_iter, all_op_kernels.end(),
        platform::errors::Unavailable(
            "There are no kernels which are registered in the %s operator.",
            op->Type()));

    OpKernelMap& kernels = kernels_iter->second;
    // auto place = platform::CPUPlace();
    // auto place = platform::CUDAPlace(0);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);
    Scope scope;
    auto exec_ctx =
        ExecutionContext(*op_base, scope, *dev_ctx, runtime_context);
    auto expected_kernel_key =
        dynamic_cast<const framework::OperatorWithKernel*>(op_base)
            ->GetExpectedKernelType(exec_ctx);

    VariableValueMap& ins_map_temp = runtime_context.inputs;

    for (auto& var_name_item : ins_map_temp) {
      for (size_t i = 0; i < var_name_item.second.size(); ++i) {
        auto var = var_name_item.second[i];
        auto tensor_in = static_cast<const Tensor*>(&(var->Get<LoDTensor>()));
        if (!tensor_in->IsInitialized()) {
          continue;
        }
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
                ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                      expected_kernel_key);
        if (!platform::is_same_place(kernel_type_for_var.place_,
                                     expected_kernel_key.place_)) {
          // need trans place
          // 1. add var in scope
          // 2. add copy op
          std::string new_var_name =
              "temp_1" + std::to_string(var_scope->var_list.size() + 1);
          auto v = new Variable();
          v->GetMutable<LoDTensor>();
          var_scope->name2id[new_var_name] = var_scope->var_list.size();
          var_scope->var_list.push_back(v);

          VariableNameMap copy_in_map;
          auto x_iter = inputs_names.find(var_name_item.first);
          copy_in_map["X"] = {x_iter->second[i]};
          VariableNameMap copy_out_map;
          copy_out_map["Out"] = {new_var_name};
          AttributeMap attr_map;
          attr_map["dst_place_type"] = convert(place);

          std::map<std::string, std::vector<int>> copy_ins_name2id;
          copy_ins_name2id["X"] = ins_name2id[var_name_item.first];
          std::map<std::string, std::vector<int>> copy_out_name2id;
          copy_out_name2id["Out"] = {var_scope->name2id[new_var_name]};

          op_func_node.input_index[var_name_item.first][i] =
              var_scope->name2id[new_var_name];

          VariableValueMap copy_ins_value_map;
          copy_ins_value_map["X"] = {var};
          VariableValueMap copy_outs_value_map;
          copy_outs_value_map["Out"] = {v};

          auto& copy_info = OpInfoMap::Instance().Get("memcpy");
          auto copy_op = copy_info.Creator()("memcpy", copy_in_map,
                                             copy_out_map, attr_map);
          OpFuncNode copy_op_func_node;
          copy_op_func_node.input_index = copy_ins_name2id;
          copy_op_func_node.output_index = copy_out_name2id;

          RuntimeContext copy_runtime_context({}, {});
          copy_runtime_context.inputs.swap(copy_ins_value_map);
          copy_runtime_context.outputs.swap(copy_outs_value_map);
          RuntimeInferShapeContext copy_infer_shape_ctx(*copy_op,
                                                        copy_runtime_context);
          static_cast<const framework::OperatorWithKernel*>(copy_op)
              ->InferShape(&copy_infer_shape_ctx);
          auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
          auto kernels_iter = all_op_kernels.find("memcpy");
          PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                            platform::errors::Unavailable(
                                "There are no kernels which are registered in "
                                "the memcpy operator."));

          OpKernelMap& kernels = kernels_iter->second;
          platform::DeviceContextPool& pool =
              platform::DeviceContextPool::Instance();
          auto* dev_ctx = pool.Get(place);
          Scope scope;
          auto copy_exec_ctx =
              ExecutionContext(*copy_op, scope, *dev_ctx, copy_runtime_context);
          auto expected_kernel_key =
              dynamic_cast<const framework::OperatorWithKernel*>(copy_op)
                  ->GetExpectedKernelType(copy_exec_ctx);
          auto kernel_iter = kernels.find(expected_kernel_key);
          copy_op_func_node.kernel_func_ =
              OpKernelComputeFunc(kernel_iter->second);
          copy_op_func_node.kernel_func_(copy_exec_ctx);
          op_list->push_back(copy_op);
          vec_func_list->push_back(copy_op_func_node);

          var_name_item.second[i] = v;
        }
      }
    }

    op_list->push_back(op_base);

    auto kernel_iter = kernels.find(expected_kernel_key);
    PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                      platform::errors::NotFound(
                          "Operator (%s) does not have kernel for %s.",
                          op->Type(), KernelTypeToString(expected_kernel_key)));

    op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
    op_func_node.kernel_func_(exec_ctx);
    vec_func_list->push_back(op_func_node);
  }
}

class InterpreterCore {
 public:
  InterpreterCore(const platform::Place& place, const ProgramDesc& prog,
                  const ProgramDesc& startup_prog, Scope* scope)
      : place_(place), prog_(prog), outer_scope_(scope) {
    paddle::framework::InitDevices();

    is_build_ = false;

    if (outer_scope_ != nullptr) {
      auto name_list = outer_scope_->LocalVarNames();
      for (auto name : name_list) {
        auto v = outer_scope_->Var(name);
        if (global_scope.name2id.find(name) == global_scope.name2id.end()) {
          global_scope.name2id[name] = global_scope.var_list.size();
        }

        global_scope.var_list.push_back(v);
      }
    }

    paddle::framework::build_variable_outer_scope(startup_prog, &global_scope,
                                                  outer_scope_);

    std::vector<paddle::framework::OpFuncNode> vec_func_list;
    std::vector<paddle::framework::OperatorBase*> op_list;
    paddle::framework::build_op_func_list(
        startup_prog, &op_list, &vec_func_list, &global_scope, place_);
    // add variable to outer_scope
  }
  void run(const std::vector<std::string>& vec_name,
           const std::vector<framework::Tensor>& vec_tensor,
           const std::vector<std::string>& vec_fetch_name,
           std::vector<framework::Tensor>* vec_out) {
    if (is_build_ == false) {
      paddle::framework::build_variable_scope(prog_, &global_scope);
    }
    for (size_t i = 0; i < vec_name.size(); ++i) {
      auto it = global_scope.name2id.find(vec_name[i]);
      assert(it != global_scope.name2id.end());

      auto feed_tensor =
          global_scope.var_list[it->second]->GetMutable<framework::LoDTensor>();
      feed_tensor->ShareDataWith(vec_tensor[i]);
    }

    if (is_build_ == false) {
      paddle::framework::build_op_func_list(prog_, &op_list, &vec_func_list,
                                            &global_scope, place_);
      is_build_ = true;
      // convert vec func_list to graph
      convert();
    } else {
      exec_instruction_list(vec_instruction_, global_scope, place_);
    }

    for (size_t i = 0; i < vec_fetch_name.size(); ++i) {
      auto it = global_scope.name2id.find(vec_fetch_name[i]);
      assert(it != global_scope.name2id.end());
      PADDLE_ENFORCE_NE(it, global_scope.name2id.end(),
                        platform::errors::NotFound(
                            "Can't find (%d) the fetch var (%s) in scope", i,
                            vec_fetch_name[i]));

      auto fetch_tensor =
          global_scope.var_list[it->second]->GetMutable<framework::LoDTensor>();

      if (platform::is_gpu_place(fetch_tensor->place())) {
        Tensor out;
        platform::DeviceContextPool& pool =
            platform::DeviceContextPool::Instance();
        auto* dev_ctx = pool.Get(place_);
        dev_ctx->Wait();
        TensorCopySync(*fetch_tensor, platform::CPUPlace(), &out);
        dev_ctx->Wait();
        vec_out->push_back(out);
      } else {
        Tensor out;
        TensorCopySync(*fetch_tensor, platform::CPUPlace(), &out);
        vec_out->push_back(out);
      }
    }
  }

 private:
  void convert() {
    input_var2op_info_.resize(global_scope.var_list.size());

    vec_instruction_.reserve(vec_func_list.size());
    dependecy_count_.resize(vec_func_list.size());
    global_scope.vec_meta_info_.resize(global_scope.var_list.size());
    for (size_t i = 0; i < vec_func_list.size(); ++i) {
      Instruction temp_inst;
      temp_inst.kernel_func_.compute_func_ = vec_func_list[i].kernel_func_;
      temp_inst.kernel_func_.operator_base_ = op_list[i];
      temp_inst.input_index_ = vec_func_list[i].input_index;
      temp_inst.output_index_ = vec_func_list[i].output_index;

      std::vector<size_t> gc_check_input_list;
      for (auto& item : vec_func_list[i].input_index) {
        for (auto id : item.second) {
          input_var2op_info_[id].push_back(i);
          gc_check_input_list.push_back(id);
        }
      }
      std::sort(gc_check_input_list.begin(), gc_check_input_list.end());
      auto last =
          std::unique(gc_check_input_list.begin(), gc_check_input_list.end());
      gc_check_input_list.erase(last, gc_check_input_list.end());
      for (auto var_id : gc_check_input_list) {
        global_scope.vec_meta_info_[var_id].var_ref_count_++;
      }

      temp_inst.gc_check_var_list.swap(gc_check_input_list);

      vec_instruction_.push_back(temp_inst);
    }

    for (size_t i = 0; i < vec_instruction_.size(); ++i) {
      std::vector<size_t> vec_temp;
      for (auto& item : vec_instruction_[i].output_index_) {
        for (auto id : item.second) {
          vec_temp = merge_vec(vec_temp, input_var2op_info_[id]);
        }
      }

      // In Program, op order is a very import information.
      // Op can noly add op after it as next as next ops.
      std::vector<size_t> filter_next;
      filter_next.reserve(vec_temp.size());
      for (auto item : vec_temp) {
        if (item > i) {
          filter_next.push_back(item);
        }
      }
      vec_instruction_[i].next_instruction_.direct_run_ = filter_next;

503 504 505 506 507 508 509 510 511 512 513
      // checkout ouput
      for (auto& item : vec_instruction_[i].output_index_) {
        for (auto id : item.second) {
          if (input_var2op_info_[id].size() == 0) {
            // output var not be used by any kernel
            vec_instruction_[i].gc_check_var_list.push_back(id);
            global_scope.vec_meta_info_[id].var_ref_count_++;
          }
        }
      }

H
hong 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
      for (auto inst_id : filter_next) {
        dependecy_count_[inst_id]++;
      }
    }
  }

  void run_instr(const Instruction& instr_node, const VariableScope& var_scope,
                 const platform::Place& place) {
    auto op_base = instr_node.kernel_func_.operator_base_;
    // build runtime cost
    VariableValueMap ins_map;
    for (auto& var_name_item : instr_node.input_index_) {
      std::vector<Variable*> input_vars;

      input_vars.reserve(var_name_item.second.size());
      for (auto& id : var_name_item.second) {
        input_vars.emplace_back(var_scope.var_list[id]);
      }
      ins_map.emplace(var_name_item.first, std::move(input_vars));
    }

    VariableValueMap outs_map;
    for (auto& var_name_item : instr_node.output_index_) {
      std::vector<Variable*> out_vars;

      out_vars.reserve(var_name_item.second.size());
      for (auto& id : var_name_item.second) {
        out_vars.emplace_back(var_scope.var_list[id]);
      }
      outs_map.emplace(var_name_item.first, std::move(out_vars));
    }

    RuntimeContext runtime_context({}, {});
    runtime_context.inputs.swap(ins_map);
    runtime_context.outputs.swap(outs_map);

    RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);

    static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
        &infer_shape_ctx);

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);
    Scope scope;

    auto exec_context =
        ExecutionContext(*op_base, scope, *dev_ctx, runtime_context);

    instr_node.kernel_func_.compute_func_(exec_context);
  }

  void exec_instruction_list(const std::vector<Instruction>& vec_instr,
                             const VariableScope& var_scope,
                             const platform::Place& place) {
    std::queue<size_t> working_queue;
    auto working_dependecy_count = dependecy_count_;
    for (size_t i = 0; i < dependecy_count_.size(); ++i) {
      if (dependecy_count_[i] == 0) {
        working_queue.push(i);
      }
    }

    auto working_var_ref = global_scope.vec_meta_info_;

    size_t run_op_number = 0;
    while (!working_queue.empty()) {
      auto instr_id = working_queue.front();
      working_queue.pop();
      auto& instr_node = vec_instr[instr_id];
      run_instr(instr_node, var_scope, place);

      auto& next_instr = instr_node.next_instruction_.direct_run_;
      ++run_op_number;

      for (auto next_i : next_instr) {
        --working_dependecy_count[next_i];
        if (working_dependecy_count[next_i] == 0) {
          working_queue.push(next_i);
        }
      }

      // GC infomation

      auto& gc_check_list = instr_node.gc_check_var_list;
      for (auto var_id : gc_check_list) {
        --working_var_ref[var_id].var_ref_count_;
      }
    }

    for (size_t i = 0; i < working_var_ref.size(); ++i) {
      if (working_var_ref[i].var_ref_count_ != 0) {
        cerr << " var ref is not zero " << i << endl;
      }
    }
  }

  const platform::Place& place_;
  const ProgramDesc& prog_;
  paddle::framework::VariableScope global_scope;
  std::vector<paddle::framework::OpFuncNode> vec_func_list;
  std::vector<paddle::framework::OperatorBase*> op_list;

  bool is_build_;

  std::vector<Instruction> vec_instruction_;

  InstructionInfo instruction_info_;

  std::vector<size_t> dependecy_count_;
  std::vector<VariableMetaInfo> ref_coun_info;
  std::vector<std::vector<size_t>> input_var2op_info_;

  Scope* outer_scope_;
};
}  // namespace framework
}  // namespace paddle