optimizer.py 20.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Y
Yu Yang 已提交
38
    def __init__(self, learning_rate, regularization=None):
Q
Qiao Longfei 已提交
39
        assert learning_rate is not None
D
dzhwinter 已提交
40
        self.regularization = regularization
Q
Qiao Longfei 已提交
41
        self._global_learning_rate = learning_rate
42 43 44 45 46
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
47
        self.helper = None
Q
Qiao Longfei 已提交
48

Q
Qiao Longfei 已提交
49 50 51
    def _create_global_learning_rate(self):
        if isinstance(self._global_learning_rate, float):
            self._global_learning_rate = layers.create_global_var(
Y
Yu Yang 已提交
52
                name=unique_name.generate("learning_rate"),
Q
Qiao Longfei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                shape=[1],
                value=float(self._global_learning_rate),
                dtype='float32',
                persistable=True)

        if not isinstance(self._global_learning_rate, framework.Variable):
            raise ValueError("learning rate should be a Variable, "
                             "actual type is %s",
                             type(self._global_learning_rate))

    @property
    def global_learning_rate(self):
        """
        get global decayed learning rate
        :return:
        """
        return self._global_learning_rate

Q
Qiao Longfei 已提交
71 72 73 74 75
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

76 77 78 79
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
Qiao Longfei 已提交
80
        return self._global_learning_rate * param_lr
81 82 83 84 85 86 87

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
88
        """
89 90
        pass

91 92 93 94 95 96 97 98 99 100 101 102 103
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
104
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
105 106 107 108 109 110 111 112 113 114 115
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
116
            raise Exception("Accumulator {} already exists for parameter {}".
117
                            format(name, param.name))
Q
Qiao Longfei 已提交
118 119 120

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
121
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
122
            persistable=True,
F
fengjiayi 已提交
123
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
124 125 126
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
127
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
128
        self._accumulators[name][param.name] = var
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
146 147 148
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
149
                                 startup_program=None):
Q
Qiao Longfei 已提交
150 151 152 153 154 155 156
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
157 158 159 160
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
161
          :param startup_program:
Q
Qiao Longfei 已提交
162
        """
163 164 165 166 167
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
168
        # for parameters and extend _finish_update method to add custom ops.
169 170

        # Create any accumulators
Q
Qiao Longfei 已提交
171
        program = loss.block.program
172
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
173 174
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
175 176 177
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
178
            self._create_global_learning_rate()
179 180 181 182 183 184 185 186 187 188 189

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
190
            self._finish_update(loss.block)
191

Y
Yancey1989 已提交
192 193
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
194

Q
Qiao Longfei 已提交
195 196
    def minimize(self,
                 loss,
197
                 startup_program=None,
Q
Qiao Longfei 已提交
198 199
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
200 201
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
202
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
203 204
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
205
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
206
                                       [error_clip_callback])
Y
Yu Yang 已提交
207 208 209

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
210
        # Add regularization if any
D
dzhwinter 已提交
211 212
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
213

Q
Qiao Longfei 已提交
214
        optimize_ops = self.create_optimization_pass(params_grads, loss,
215
                                                     startup_program)
T
typhoonzero 已提交
216
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
217 218 219 220 221 222


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
223
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
224
        assert learning_rate is not None
Q
Qiao Longfei 已提交
225 226
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
227 228
        self.type = "sgd"

229 230
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
231

Q
Qiao Longfei 已提交
232 233 234 235 236 237
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
238
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
239
            },
240
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
241 242

        return sgd_op
243 244 245 246 247 248 249


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
250
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
251 252
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
253 254
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
255 256
        self.type = "momentum"
        self._momentum = momentum
257
        self._use_nesterov = bool(use_nesterov)
258 259 260 261 262

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
263
            self._add_accumulator(self._velocity_acc_str, p)
264 265 266 267 268 269 270 271 272 273 274 275 276

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
277
                "LearningRate": self._create_param_lr(param_and_grad)
278 279 280 281 282
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
283
            attrs={"mu": self._momentum,
284
                   "use_nesterov": self._use_nesterov})
285 286

        return momentum_op
287 288 289 290 291 292 293


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
294
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
295 296
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
297 298
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
299 300 301 302 303 304 305
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
306
            self._add_accumulator(self._moment_acc_str, p)
307 308 309 310 311 312 313

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

314
        # Create the adagrad optimizer op
315 316 317 318 319 320
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
321
                "LearningRate": self._create_param_lr(param_and_grad)
322 323 324 325 326 327
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
328 329 330 331 332 333 334 335 336 337 338 339


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
340
                 epsilon=1e-8,
D
dzhwinter 已提交
341
                 **kwargs):
342 343 344 345
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
346 347
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
348 349 350 351 352 353 354 355
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
356
        main_block = block.program.global_block()
357 358
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
359
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
360
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
361 362 363 364 365
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
366
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
367 368

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
369
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
370 371 372 373 374 375
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
376
            self._beta2_pow_acc, initializer=Constant(self._beta2))
377 378 379

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
380 381
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
382 383 384 385 386 387 388 389

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
390
        # create the adam optimize op
391 392 393 394 395
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
396
                "LearningRate": self._create_param_lr(param_and_grad),
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
419 420
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
421 422 423 424 425
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
426
        scale_beta2 = main_block.append_op(
427 428 429 430 431 432
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
433 434 435 436 437 438 439 440 441 442 443 444


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
445
                 epsilon=1e-8,
D
dzhwinter 已提交
446
                 **kwargs):
447 448 449 450
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
451 452
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
453 454 455 456 457 458 459 460
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
461
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
462
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
463 464 465 466 467
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
468
            self._beta1_pow_acc, initializer=Constant(self._beta1))
469 470 471

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
472 473
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
474 475 476 477 478 479 480 481 482 483 484 485 486

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
487
                "LearningRate": self._create_param_lr(param_and_grad),
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
509 510
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
511 512 513 514 515 516
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
517 518 519 520 521 522 523


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
524
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
525 526 527 528
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
529 530
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer