lookup_table_op.cu 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
20
#include "paddle/fluid/platform/float16.h"
21 22 23 24

namespace paddle {
namespace operators {

25 26
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
27
__global__ void LookupTable(T *output, const T *table, const int64_t *ids,
28 29
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
30
  int idx = threadIdx.x;
31
  int idy = blockIdx.x + threadIdx.y * GridDimX;
32 33

  while (idy < K) {
34
    int64_t id = ids[idy];
35 36
    PADDLE_ASSERT_MSG_CODE(id >= 0, "received id:", id);
    PADDLE_ASSERT_MSG_CODE(id < N, "received id:", id);
37 38
    T *out = output + idy * D;
    const T *tab = table + id * D;
39
    for (int i = idx; i < D; i += BlockDimX) {
40
      if (PaddingFlag) {
41
        if (id == padding_idx)
42 43 44 45 46 47
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
48
    }
49
    idy += BlockDimY * GridDimX;
50 51 52
  }
}

53
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
54
__global__ void LookupTableGrad(T *table, const T *output, const int64_t *ids,
55 56
                                const int64_t N, const int64_t K,
                                const int64_t D) {
57
  int idx = threadIdx.x;
58
  int idy = blockIdx.x + threadIdx.y * GridDimX;
59 60

  while (idy < K) {
61 62 63
    int64_t id = ids[idy];
    PADDLE_ASSERT_MSG_CODE(id >= 0, "received id:", id);
    PADDLE_ASSERT_MSG_CODE(id < N, "received id:", id);
64 65
    const T *out = output + idy * D;
    T *tab = table + id * D;
66
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
67
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
68
    }
69
    idy += BlockDimY * GridDimX;
70 71 72 73
  }
}

template <typename T>
Y
Yu Yang 已提交
74
class LookupTableCUDAKernel : public framework::OpKernel<T> {
75
 public:
76 77 78 79
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
80
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
    auto height_sections = context.Attr<std::vector<int>>("height_sections");
    auto table_names = context.Attr<std::vector<std::string>>("table_names");

    if (!epmap.empty()) {
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch(id_name, out_name, table_names, epmap,
96 97
                                       height_sections, context,
                                       context.scope());
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      size_t N = table_t->dims()[0];
      size_t D = table_t->dims()[1];
      size_t K = ids_t->numel();

      auto *ids = ids_t->data<int64_t>();
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      dim3 threads(128, 8);
      dim3 grids(8, 1);

      if (padding_idx == -1)
        LookupTable<T, 128, 8, 8, false><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
      else
        LookupTable<T, 128, 8, 8, true><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
    }
124 125 126 127
  }
};

template <typename T>
Y
Yu Yang 已提交
128
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
129
 public:
130 131
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
Q
QI JUN 已提交
132
        context.template device_context<platform::CUDADeviceContext>();
133
    bool is_sparse = context.Attr<bool>("is_sparse");
134

135 136
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
137
    if (is_sparse) {
138 139 140 141
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
142

143
      auto *ids_data = ids->data<int64_t>();
144
      int64_t ids_num = ids->numel();
145

Q
QI JUN 已提交
146
      auto stream = dev_ctx.stream();
147 148
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
149
      new_rows.resize(ids_num);
D
dzhwinter 已提交
150
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
151

Y
Yu Yang 已提交
152
      // TODO(yuyang18): Strange code here.
Y
Yu Yang 已提交
153 154
      memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                   gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
155 156
      d_table->set_rows(new_rows);

157
      auto *d_table_value = d_table->mutable_value();
158
      d_table_value->Resize({ids_num, table->dims()[1]});
159 160
      d_table_value->mutable_data<T>(context.GetPlace());

161 162
      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
F
fengjiayi 已提交
163 164 165 166
      auto d_output_dims = d_output->dims();
      PADDLE_ENFORCE_EQ(
          d_table_value->dims(),
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
167
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
168
                   d_output->numel() * sizeof(T), stream);
169 170

    } else {
F
fengjiayi 已提交
171 172 173
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
174 175 176 177

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
178 179 180
      const int64_t *ids = ids_t->data<int64_t>();
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());
181 182

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
183
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
184 185 186

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
187
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
188
          d_table, d_output, ids, N, K, D);
189
    }
190 191 192 193 194 195 196
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
197
namespace plat = paddle::platform;
Q
QI JUN 已提交
198
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
199 200
                        ops::LookupTableCUDAKernel<double>,
                        ops::LookupTableCUDAKernel<plat::float16>);
Q
QI JUN 已提交
201 202
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
203 204
                        ops::LookupTableGradCUDAKernel<double>,
                        ops::LookupTableGradCUDAKernel<plat::float16>);