dist_se_resnext.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
17
import six
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            conv = self.conv_bn_layer(
                input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
        out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
        scale = self.squeeze_excitation(
            input=conv2,
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) / 2,
            groups=groups,
            act=None,
W
Wu Yi 已提交
178 179 180
            # avoid pserver CPU init differs from GPU
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant()),
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        squeeze = fluid.layers.fc(input=pool,
                                  size=num_channels / reduction_ratio,
                                  act='relu')
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
        excitation = fluid.layers.fc(input=squeeze,
                                     size=num_channels,
                                     act='sigmoid')
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


def get_model(batch_size):
    # Input data
W
Wu Yi 已提交
201 202
    image = fluid.layers.data(name="data", shape=[3, 224, 224], dtype='float32')
    label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    # Train program
    model = SE_ResNeXt(layers=50)
    out = model.net(input=image, class_dim=102)
    cost = fluid.layers.cross_entropy(input=out, label=label)

    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    # Evaluator
    test_program = fluid.default_main_program().clone(for_test=True)

    # Optimization
    total_images = 6149  # flowers
    epochs = [30, 60, 90]
    step = int(total_images / batch_size + 1)

    bd = [step * e for e in epochs]
    base_lr = 0.1
    lr = []
    lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]

    optimizer = fluid.optimizer.Momentum(
W
Wu Yi 已提交
227 228 229 230
        # FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
        #learning_rate=fluid.layers.piecewise_decay(
        #    boundaries=bd, values=lr),
        learning_rate=base_lr,
231 232 233 234 235 236 237 238
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))
    optimizer.minimize(avg_cost)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.flowers.train(), batch_size=batch_size)
    test_reader = paddle.batch(
W
Wu Yi 已提交
239
        paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    return test_program, avg_cost, train_reader, test_reader, acc_top1, out


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


class DistSeResneXt2x2:
    def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
                    trainer_id):
        get_model(batch_size=2)
        t = get_transpiler(trainer_id,
                           fluid.default_main_program(), pserver_endpoints,
                           trainers)
        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

    def _wait_ps_ready(self, pid):
        retry_times = 20
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            print("waiting ps ready: ", pid)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
            except os.error:
                retry_times -= 1

    def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
W
Wu Yi 已提交
284
            batch_size=2)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        if is_dist:
            t = get_transpiler(trainer_id,
                               fluid.default_main_program(), endpoints,
                               trainers)
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
W
Wu Yi 已提交
300
            True, loss_name=avg_cost.name, exec_strategy=strategy)
301 302

        feed_var_list = [
303
            var for var in trainer_prog.global_block().vars.values()
304 305 306 307
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
W
Wu Yi 已提交
308 309 310 311 312
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
313
        print(first_loss)
W
Wu Yi 已提交
314

315
        for i in six.moves.xrange(5):
W
Wu Yi 已提交
316 317 318 319 320
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        print(last_loss)


def main(role="pserver",
         endpoints="127.0.0.1:9123",
         trainer_id=0,
         current_endpoint="127.0.0.1:9123",
         trainers=1,
         is_dist=True):
    model = DistSeResneXt2x2()
    if role == "pserver":
        model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)


if __name__ == "__main__":
    if len(sys.argv) != 7:
        print(
            "Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
        )
    role = sys.argv[1]
    endpoints = sys.argv[2]
    trainer_id = int(sys.argv[3])
    current_endpoint = sys.argv[4]
    trainers = int(sys.argv[5])
    is_dist = True if sys.argv[6] == "TRUE" else False
    main(
        role=role,
        endpoints=endpoints,
        trainer_id=trainer_id,
        current_endpoint=current_endpoint,
        trainers=trainers,
        is_dist=is_dist)