executor_thread_worker.cc 21.4 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
H
heqiaozhi 已提交
16
#include <algorithm>
W
Wang Guibao 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
30
#include "paddle/fluid/platform/cpu_helper.h"
W
Wang Guibao 已提交
31
#include "paddle/fluid/platform/place.h"
32
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
33 34 35 36
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

H
heqiaozhi 已提交
37
#ifdef PADDLE_WITH_PSLIB
38
int DensePullThread::start() {
D
dongdaxiang 已提交
39 40 41
  _running = true;
  _t = std::thread(&DensePullThread::run, this);
  return 0;
42 43 44
}

void DensePullThread::run() {
D
dongdaxiang 已提交
45 46 47 48 49 50 51 52 53 54 55
  while (_running) {
    _pull_dense_status.resize(0);
    for (auto& t : _dense_variable_name) {
      if (check_update_param(t.first)) {
        auto status = pull_dense(t.first);
        _pull_dense_status.emplace_back(std::move(status));
        reset_thread_version(t.first);
      }
    }
    if (_pull_dense_status.size() != 0) {
      wait_all();
56
    }
H
heqiaozhi 已提交
57

D
dongdaxiang 已提交
58 59
    usleep(_sleep_time_ms * 1000);
  }
60 61
}
bool DensePullThread::check_update_param(uint64_t table_id) {
D
dongdaxiang 已提交
62 63 64 65 66 67 68 69 70 71
  {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    auto& version = _training_versions[table_id];
    _current_version[table_id] =
        *(std::min_element(version.begin(), version.end()));
  }
  if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
    return false;
  }
  return true;
72 73 74
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
D
dongdaxiang 已提交
75 76
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _last_versions[table_id] = _current_version[table_id];
77 78
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
D
dongdaxiang 已提交
79 80 81 82
  auto& regions = _regions[table_id];
  regions.clear();
  auto& variables = _dense_variable_name[table_id];
  regions.resize(variables.size());
H
heqiaozhi 已提交
83

D
dongdaxiang 已提交
84 85 86 87
  for (auto i = 0u; i < variables.size(); ++i) {
    auto& t = variables[i];
    Variable* var = _root_scope->FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
88

D
dongdaxiang 已提交
89 90 91 92 93
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
94 95 96
}

void DensePullThread::wait_all() {
D
dongdaxiang 已提交
97 98 99 100
  for (auto& t : _pull_dense_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
H
heqiaozhi 已提交
101
      LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
102
    }
D
dongdaxiang 已提交
103
  }
H
heqiaozhi 已提交
104

D
dongdaxiang 已提交
105 106 107 108
  if (_pull_dense_fail_times > 20) {
    LOG(FATAL) << "pull dense failed times more than 20 times";
    exit(-1);
  }
H
heqiaozhi 已提交
109

D
dongdaxiang 已提交
110
  _pull_dense_status.resize(0);
111 112
}

H
heqiaozhi 已提交
113 114
void DensePullThread::increase_thread_version(int thread_id,
                                              uint64_t table_id) {
D
dongdaxiang 已提交
115 116
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _training_versions[table_id][thread_id]++;
117
}
D
dongdaxiang 已提交
118
#endif
H
heqiaozhi 已提交
119

W
Wang Guibao 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
184
  LOG(WARNING) << "concurrency capacity " << concurrency_cap;
W
Wang Guibao 已提交
185 186
  int thread_id = this->thread_id_;

T
Tao Luo 已提交
187
  if (static_cast<unsigned>(thread_id) < concurrency_cap) {
W
Wang Guibao 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

Y
Yu Yang 已提交
228 229
static void print_fetch_var(Scope* scope, const std::string& var_name) {
  auto& tensor = scope->FindVar(var_name)->Get<LoDTensor>();
W
Wang Guibao 已提交
230

Y
Yu Yang 已提交
231 232 233 234 235 236 237 238 239 240
#define PrintLoDTensorCallback(cpp_type, proto_type) \
  do {                                               \
    if (tensor.type() == proto_type) {               \
      print_lod_tensor<cpp_type>(var_name, tensor);  \
      return;                                        \
    }                                                \
  } while (0)

  _ForEachDataType_(PrintLoDTensorCallback);
  VLOG(1) << "print_fetch_var: unrecognized data type:" << tensor.type();
W
Wang Guibao 已提交
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
void ExecutorThreadWorker::TrainFilesWithTimer() {
  platform::SetNumThreads(1);
  SetDevice();
  thread_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
  while ((cur_batch = thread_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
      timeline.Start();
      ops_[i]->Run(*thread_scope_, place_);
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
    ++batch_cnt;
    thread_scope_->DropKids();
    if (batch_cnt > 0 && batch_cnt % 1000 == 0) {
      for (size_t i = 0; i < ops_.size(); ++i) {
        fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                op_name[i].c_str(), op_total_time[i] / batch_cnt);
      }
      fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
    }
    timeline.Start();
  }
}

W
Wang Guibao 已提交
286
void ExecutorThreadWorker::TrainFiles() {
287 288
  platform::SetNumThreads(1);

W
Wang Guibao 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  // todo: configurable
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

H
heqiaozhi 已提交
334
#ifdef PADDLE_WITH_PSLIB
335
//  AsyncExecutor
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

364 365
void AsyncExecutorThreadWorker::SetPSlibPtr(
    std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
D
dongdaxiang 已提交
366
  _pslib_ptr = pslib_ptr;
367
}
368

369 370
void AsyncExecutorThreadWorker::SetPullDenseThread(
    std::shared_ptr<DensePullThread> dpt) {
D
dongdaxiang 已提交
371
  _pull_dense_thread = dpt;
372
}
373

374
void AsyncExecutorThreadWorker::TrainOneNetwork() {
D
dongdaxiang 已提交
375
  PrepareParams();
H
heqiaozhi 已提交
376

D
dongdaxiang 已提交
377 378 379 380 381 382
  for (auto& op : ops_) {
    if (op->Type().find("sgd") != std::string::npos) {
      continue;
    }
    bool need_skip = false;
    for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
H
heqiaozhi 已提交
383
      if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
D
dongdaxiang 已提交
384 385 386 387 388 389
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op->Run(*thread_scope_, place_);
390
    }
D
dongdaxiang 已提交
391 392
  }
  UpdateParams();
393 394
}

395 396
void AsyncExecutorThreadWorker::SetParamConfig(
    AsyncWorkerParamConfig* param_config) {
D
dongdaxiang 已提交
397
  _param_config = param_config;
398 399 400
}

void AsyncExecutorThreadWorker::PrepareParams() {
D
dongdaxiang 已提交
401 402 403 404 405 406 407 408 409
  for (auto table_id : _param_config->sparse_table_id) {
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
      t.wait();
      auto status = t.get();
      if (status != 0) {
        LOG(ERROR) << "pull sparse failed, status[" << status << "]";
        exit(-1);
      }
410
    }
D
dongdaxiang 已提交
411 412
  }
  _pull_sparse_status.resize(0);
413

D
dongdaxiang 已提交
414 415 416
  for (auto table_id : _param_config->sparse_table_id) {
    FillSparse(table_id);
  }
417 418 419
}

void AsyncExecutorThreadWorker::UpdateParams() {
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
436
    }
437 438 439 440 441 442 443 444
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
445
    }
446 447 448 449 450 451 452 453
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
454 455 456
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
D
dongdaxiang 已提交
457 458 459 460 461 462 463 464 465 466
  std::vector<paddle::ps::Region> regions;
  for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
    Variable* var = thread_scope_->FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
H
heqiaozhi 已提交
467 468 469

  auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
D
dongdaxiang 已提交
470
  _push_dense_status.push_back(std::move(status));
471 472 473
}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {
474 475 476 477 478 479 480
  auto& features = _features[table_id];
  auto& feature_value = _feature_value[table_id];
  auto fea_dim = _param_config->fea_dim;
  // slot id starts from 1
  features.clear();
  features.resize(0);
  features.reserve(MAX_FEASIGN_NUM);
H
heqiaozhi 已提交
481
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
482 483 484 485 486 487 488 489 490 491 492 493 494
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      // todo(colourful-tree): current trick - filter feasign=use_slot_mod(
      // bug: datafeed fill use_slot_mod for empty slot)
      if (ids[i] == 0u) {
        continue;
      }
      features.push_back(static_cast<uint64_t>(ids[i]));
H
heqiaozhi 已提交
495
    }
496
  }
H
heqiaozhi 已提交
497 498
  check_pull_push_memory(features, &feature_value, fea_dim);

499 500 501 502
  std::vector<float*> pull_feature_value;
  for (auto i = 0u; i < features.size(); ++i) {
    pull_feature_value.push_back(feature_value[i].data());
  }
H
heqiaozhi 已提交
503

504 505 506
  auto status = _pslib_ptr->_worker_ptr->pull_sparse(
      pull_feature_value.data(), table_id, features.data(), features.size());
  _pull_sparse_status.push_back(std::move(status));
H
heqiaozhi 已提交
507

508
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
509 510
  check_pull_push_memory(features, &push_g, fea_dim);

511
  collect_feasign_info(table_id);
512 513 514
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
515 516 517 518
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& fea_value = _feature_value[table_id];
H
heqiaozhi 已提交
519

520
  CHECK(features.size() > 0) << "feature size check failed";
H
heqiaozhi 已提交
521

522
  auto fea_idx = 0u;
H
heqiaozhi 已提交
523

524
  std::vector<float> init_value(fea_dim);
H
heqiaozhi 已提交
525 526

  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
527 528 529 530 531 532 533 534 535
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(
        _param_config->slot_input_vec[table_id][slot_idx - 1]);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
536 537
    float* ptr =
        tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
538 539
    memset(ptr, 0, sizeof(float) * len * slot_dim);
    auto& tensor_lod = tensor->lod()[0];
H
heqiaozhi 已提交
540

541 542
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
H
heqiaozhi 已提交
543

544 545
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
H
heqiaozhi 已提交
546 547
        memcpy(ptr + slot_dim * index, init_value.data() + 2,
               sizeof(float) * slot_dim);
548 549
        continue;
      }
H
heqiaozhi 已提交
550 551
      memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * slot_dim);
552
      fea_idx++;
553
    }
554
  }
555 556 557
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
558 559 560 561
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
562 563 564 565
  check_pull_push_memory(features, &push_g, fea_dim);
  CHECK(push_g.size() == features.size() + 1)
      << "push_g size:" << push_g.size()
      << " features size:" << features.size();
566 567 568 569
  uint64_t fea_idx = 0u;
  auto& fea_info = _fea_info[table_id];
  int offset = 2;
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
H
heqiaozhi 已提交
570
  // slot_idx = 0 is label
571
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
572 573 574 575 576 577
    if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
        _param_config->slot_alias_to_table.end()) {
      LOG(ERROR) << "ERROR slot_idx:" << slot_idx
                 << " name:" << feed_vec[slot_idx];
    } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
               table_id) {
578
      continue;
579
    }
580 581
    Variable* g_var = thread_scope_->FindVar(
        _param_config->gradient_var[table_id][slot_idx - 1]);
H
heqiaozhi 已提交
582 583 584
    CHECK(g_var != nullptr)
        << "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
        << "] not found";
585 586
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
H
heqiaozhi 已提交
587 588 589
      LOG(ERROR) << "var["
                 << _param_config->gradient_var[table_id][slot_idx - 1]
                 << "] not found";
590 591 592
      exit(-1);
    }
    float* g = g_tensor->data<float>();
H
heqiaozhi 已提交
593

594 595 596 597 598 599 600 601
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
H
heqiaozhi 已提交
602 603 604 605
    CHECK(slot_dim * len == g_tensor->numel())
        << "len:" << len << " g_numel:" << g_tensor->numel();
    CHECK(len == tensor->numel()) << "len:" << len
                                  << "t_numel:" << tensor->numel();
606 607 608 609 610 611
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += slot_dim;
        continue;
      }
H
heqiaozhi 已提交
612
      memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
613
      push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
614 615
      CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
                                       << " size:" << fea_info.size();
616 617 618
      push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
      g += slot_dim;
      fea_idx++;
619
    }
620
  }
H
heqiaozhi 已提交
621 622
  CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
                                    << " features size:" << features.size();
623
  CHECK_GT(features.size(), 0);
H
heqiaozhi 已提交
624

625 626 627 628 629
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < features.size(); ++i) {
    push_g_vec.push_back(push_g[i].data());
  }
  auto status = _pslib_ptr->_worker_ptr->push_sparse(
H
heqiaozhi 已提交
630 631
      table_id, features.data(), (const float**)push_g_vec.data(),
      features.size());
632
  _push_sparse_status.push_back(std::move(status));
633 634
}

H
heqiaozhi 已提交
635
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
636 637 638 639 640 641 642
  auto& fea_info = _fea_info[table_id];
  auto& feature = _features[table_id];
  fea_info.resize(feature.size());
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
  Variable* var = thread_scope_->FindVar(feed_vec[0]);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label = tensor->data<int64_t>();
H
heqiaozhi 已提交
643

644 645 646
  int global_index = 0;
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
647
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
648
    int64_t* ids = tensor->data<int64_t>();
H
heqiaozhi 已提交
649

650 651 652 653 654
    int fea_idx = 0;
    for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        if (ids[fea_idx] == 0u) {
          continue;
655
        }
656
        FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
H
heqiaozhi 已提交
657

658 659
        fea_info[global_index++] = std::move(info);
      }
660
    }
661
  }
H
heqiaozhi 已提交
662 663
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
664 665 666
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
667 668 669 670
    const std::vector<uint64_t>& features,
    std::vector<std::vector<float>>* push_g, int dim) {
  push_g->resize(features.size() + 1);
  for (auto& t : *push_g) {
D
dongdaxiang 已提交
671 672
    t.resize(dim);
  }
673 674 675
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
676
    const std::vector<uint64_t>& features, std::vector<float*>* push_g,
D
dongdaxiang 已提交
677
    int dim) {
H
heqiaozhi 已提交
678 679 680
  if (features.size() > push_g->size()) {
    push_g->reserve(features.size() + 1);
    auto size = features.size() - push_g->size() + 1;
D
dongdaxiang 已提交
681 682
    for (auto i = 0u; i < size; ++i) {
      float* ptr = new float[dim];
H
heqiaozhi 已提交
683
      push_g->push_back(ptr);
684
    }
D
dongdaxiang 已提交
685
  }
686
}
H
heqiaozhi 已提交
687
#endif
688

W
Wang Guibao 已提交
689 690
}  // einit_modelnd namespace framework
}  // end namespace paddle