jit_kernel_rnn.cc 20.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/macros.h"
T
tensor-tang 已提交
20 21 22 23

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
24 25 26 27

namespace paddle {
namespace operators {
namespace math {
T
tensor-tang 已提交
28
namespace jitkernel {
T
tensor-tang 已提交
29
namespace detail {
T
tensor-tang 已提交
30 31
#ifdef __AVX__
__m256 ExpAVX(__m256 x);
T
tensor-tang 已提交
32
#endif
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x);
#endif

}  // namespace detail

T
tensor-tang 已提交
40 41
namespace jit = platform::jit;

T
tensor-tang 已提交
42 43 44 45 46 47 48 49 50
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;

class AVXAct {
 public:
  virtual ~AVXAct() = default;
  virtual __m256 Compute(__m256 x) const = 0;
};

T
tensor-tang 已提交
51
template <act_type type, jit::cpu_isa_t isa>
T
tensor-tang 已提交
52 53 54 55 56
class AVXActImpl : public AVXAct {
 public:
  __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67
#define AVX_SIGMOID(isa, expisa)                                 \
  template <>                                                    \
  __m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const {    \
    __m256 ones = _mm256_set1_ps(1.0f);                          \
    x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
    x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
    x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x);                  \
    x = expisa(x);                                               \
    x = _mm256_add_ps(ones, x);                                  \
    return _mm256_div_ps(ones, x);                               \
  }
T
tensor-tang 已提交
68

T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79
#define AVX_TANH(isa, expisa)                              \
  template <>                                              \
  __m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
    __m256 ones = _mm256_set1_ps(1.0f);                    \
    x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x);           \
    x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT));   \
    x = expisa(x);                                         \
    x = _mm256_add_ps(ones, x);                            \
    x = _mm256_div_ps(_mm256_set1_ps(2.0f), x);            \
    return _mm256_sub_ps(x, ones);                         \
  }
T
tensor-tang 已提交
80

T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#define AVX_RELU(isa)                                      \
  template <>                                              \
  __m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
    return _mm256_max_ps(x, _mm256_setzero_ps());          \
  }

#define AVX_IDENTITY(isa)                                      \
  template <>                                                  \
  __m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
    return x;                                                  \
  }

#define FOR_EACH_AVX_ISA(macro_) \
  macro_(jit::avx);              \
  macro_(jit::avx2);             \
  macro_(jit::avx512f)

FOR_EACH_AVX_ISA(AVX_RELU);
FOR_EACH_AVX_ISA(AVX_IDENTITY);

AVX_SIGMOID(jit::avx, detail::ExpAVX);
AVX_TANH(jit::avx, detail::ExpAVX);

#ifdef __AVX2__
AVX_SIGMOID(jit::avx2, detail::ExpAVX2);
AVX_SIGMOID(jit::avx512f, detail::ExpAVX2);
AVX_TANH(jit::avx2, detail::ExpAVX2);
AVX_TANH(jit::avx512f, detail::ExpAVX2);
#endif

#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
T
tensor-tang 已提交
116 117 118

#endif

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
static std::shared_ptr<const VActKernel<T>> GetActKernel(
    const std::string& type, int n) {
  if (type == "sigmoid") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
  } else if (type == "relu") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VReluKernel<T>>(n));
  } else if (type == "tanh") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VTanhKernel<T>>(n));
  } else if (type == "identity" || type == "") {
    return std::dynamic_pointer_cast<const VActKernel<T>>(
        KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}

T
tensor-tang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
template <jit::cpu_isa_t isa>
static std::unique_ptr<AVXAct> GetAVXAct(const std::string& type) {
  if (type == "sigmoid") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>());
  } else if (type == "relu") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>());
  } else if (type == "tanh") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>());
  } else if (type == "identity" || type == "") {
    return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>());
  }
  PADDLE_THROW("Not support type: %s", type);
  return nullptr;
}

T
tensor-tang 已提交
154 155 156 157
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
T
tensor-tang 已提交
158
  explicit LSTMKernelImpl(const std::string& act_gate,
T
tensor-tang 已提交
159
                          const std::string& act_cand,
T
tensor-tang 已提交
160
                          const std::string& act_cell, int d)
T
tensor-tang 已提交
161 162 163 164
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
165 166 167 168
    act_gate_d3_ = GetActKernel<T>(act_gate, d3_);
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
169 170 171 172
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
  }

173
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
174
                   T* checked) const override {
T
tensor-tang 已提交
175
    // gates: W_ch, W_ih, W_fh, W_oh
176
    act_gate_d3_->Compute(gates + d_, gates + d_);
T
tensor-tang 已提交
177 178 179 180 181 182 183 184 185 186

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
187
  }
188 189 190 191 192 193 194 195 196 197
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* H_t = act_cell(C_t) * ogated */
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
198 199 200

 private:
  int d_, d2_, d3_;
201 202
  std::shared_ptr<const VActKernel<T>> act_gate_d3_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
203 204
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
T
tensor-tang 已提交
205 206 207
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
#endif
T
tensor-tang 已提交
208 209
};

T
tensor-tang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#define INTRI8_FLOAT(isa)                                                    \
  template <>                                                                \
  LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl(                          \
      const std::string& act_gate, const std::string& act_cand,              \
      const std::string& act_cell, int d)                                    \
      : LSTMKernel<float>() {                                                \
    avx_act_gate_ = GetAVXAct<isa>(act_gate);                                \
    avx_act_cand_ = GetAVXAct<isa>(act_cand);                                \
    avx_act_cell_ = GetAVXAct<isa>(act_cell);                                \
  }                                                                          \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt(                        \
      float* gates, const float* ct_1, float* ct, float* ht,                 \
      const float* wp_data, float* checked) const {                          \
    /* gates: W_ch, W_ih, W_fh, W_oh */                                      \
    __m256 c, i, f, o;                                                       \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    f = _mm256_loadu_ps(gates + 16);                                         \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = C_t-1 * fgated + cand_gated * igated*/                          \
    c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
    i = _mm256_loadu_ps(ct_1);                                               \
    f = _mm256_mul_ps(i, avx_act_gate_->Compute(f));                         \
    f = _mm256_add_ps(c, f);                                                 \
    _mm256_storeu_ps(ct, f);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
  }                                                                          \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1(                        \
      float* gates, float* ct, float* ht, const float* wp_data) const {      \
    __m256 c, i, o;                                                          \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = igated * cgated*/                                               \
    c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
    _mm256_storeu_ps(ct, c);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266
  }

// TODO(TJ): optimize keq16

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
267 268 269 270 271 272 273 274 275 276 277
/* Peephole JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class PeepholeKernelImpl : public LSTMKernel<T> {
 public:
  explicit PeepholeKernelImpl(const std::string& act_gate,
                              const std::string& act_cand,
                              const std::string& act_cell, int d)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
278 279 280
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_cand_d_ = GetActKernel<T>(act_cand, d);
    act_cell_d_ = GetActKernel<T>(act_cell, d);
T
tensor-tang 已提交
281 282
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
283 284
    vadd_d2_ = KernelPool::Instance().template Get<VAddKernel<T>>(d2_);
    act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
T
tensor-tang 已提交
285 286
  }

287
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T
tensor-tang 已提交
288
                   T* checked) const override {
289 290 291 292 293 294
    /* get fgated and igated*/
    vmul_d_->Compute(wp_data, ct_1, checked);
    vmul_d_->Compute(wp_data + d_, ct_1, checked + d_);
    vadd_d2_->Compute(checked, gates + d_, gates + d_);
    act_gate_d2_->Compute(gates + d_, gates + d_);
    /* C_t = C_t-1 * fgated + cand_gated * igated*/
T
tensor-tang 已提交
295 296 297 298
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);
299 300 301 302 303 304 305 306
    /* get ogated*/
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
    act_gate_d_->Compute(gates + d3_, gates + d3_);
    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
307

308 309 310 311 312 313 314 315
  void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
    /* C_t = igated * cgated*/
    act_gate_d_->Compute(gates + d_, gates + d_);
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, ct);
    /* get outgated, put W_oc * C_t on igated */
    vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
    vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
T
tensor-tang 已提交
316
    /* H_t = act_cell(C_t) * ogated */
317
    act_gate_d_->Compute(gates + d3_, gates + d3_);
T
tensor-tang 已提交
318 319 320
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
321

T
tensor-tang 已提交
322 323
 private:
  int d_, d2_, d3_;
324 325
  std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_cand_d_,
      act_cell_d_;
T
tensor-tang 已提交
326
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
327
  std::shared_ptr<const VAddKernel<T>> vadd_d_, vadd_d2_;
T
tensor-tang 已提交
328 329 330 331 332 333 334 335 336
};

#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                  \
  template <>                                                         \
  std::shared_ptr<const LSTMKernel<ker_dtype>>                        \
  KernelPool::Get<LSTMKernel<ker_dtype>, const std::string&,          \
                  const std::string&, const std::string&, int, bool>( \
      const std::string& act_gate, const std::string& act_cand,       \
      const std::string& act_cell, int d, bool use_peephole)
T
tensor-tang 已提交
337

T
tensor-tang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key)                               \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell + \
                                       (use_peephole ? "p" : "n")

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                    \
  if (use_peephole) {                                                  \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<PeepholeKernelImpl<dtype, isa, k>>(           \
            act_gate, act_cand, act_cell, d));                         \
  } else {                                                             \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_cand, \
                                                   act_cell, d));      \
  }
T
tensor-tang 已提交
352 353 354 355

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

T
tensor-tang 已提交
356
#undef INTRI8_FLOAT
T
tensor-tang 已提交
357 358 359
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

/* GRU JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class GRUKernelImpl : public GRUKernel<T> {
 public:
  explicit GRUKernelImpl(const std::string& act_gate,
                         const std::string& act_state, int d)
      : GRUKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
    act_gate_d_ = GetActKernel<T>(act_gate, d);
    act_state_d_ = GetActKernel<T>(act_state, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
  }

  void ComputeH1(T* gates, T* ht) const override {
    act_gate_d_->Compute(gates, gates);
    act_state_d_->Compute(gates + d2_, gates + d2_);
    vmul_d_->Compute(gates, gates + d2_, ht);
  }
T
tensor-tang 已提交
381

T
tensor-tang 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  void ComputeHtPart1(T* gates, const T* ht_1, T* ht) const override {
    // W: {W_update, W_reset; W_state}
    act_gate_d2_->Compute(gates, gates);
    vmul_d_->Compute(ht_1, gates + d_, ht);
  }

  void ComputeHtPart2(T* gates, const T* ht_1, T* ht) const override {
    T* y = gates + d2_;
    act_state_d_->Compute(y, y);
    // out = zt*ht~ + (1-zt)*ht_1
    for (int i = 0; i < d_; ++i) {
      ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
    }
  }

 private:
  int d_, d2_;
  std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_state_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
T
tensor-tang 已提交
401 402 403
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_state_;
#endif
T
tensor-tang 已提交
404 405
};

T
tensor-tang 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#define INTRI8_FLOAT(isa)                                                     \
  template <>                                                                 \
  GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl(                             \
      const std::string& act_gate, const std::string& act_state, int d)       \
      : GRUKernel<float>() {                                                  \
    avx_act_gate_ = GetAVXAct<isa>(act_gate);                                 \
    avx_act_state_ = GetAVXAct<isa>(act_state);                               \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht)    \
      const {                                                                 \
    __m256 u, s;                                                              \
    /* W: {W_update, W_reset; W_state} */                                     \
    u = _mm256_loadu_ps(gates);                                               \
    s = _mm256_loadu_ps(gates + 16);                                          \
    s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
    _mm256_storeu_ps(ht, s);                                                  \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1(                       \
      float* gates, const float* ht_1, float* ht) const {                     \
    /* not exactly equal the any implementation */                            \
    __m256 r, ht0;                                                            \
    r = _mm256_loadu_ps(gates + 8);                                           \
    ht0 = _mm256_loadu_ps(ht_1);                                              \
    r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0);                        \
    _mm256_storeu_ps(ht, r);                                                  \
  }                                                                           \
  template <>                                                                 \
  void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2(                       \
      float* gates, const float* ht_1, float* ht) const {                     \
    /* not exactly equal the any implementation */                            \
    __m256 u, s, ht0;                                                         \
    u = _mm256_loadu_ps(gates);                                               \
    s = _mm256_loadu_ps(gates + 16);                                          \
    ht0 = _mm256_loadu_ps(ht_1);                                              \
    u = avx_act_gate_->Compute(u);                                            \
    s = _mm256_mul_ps(u, avx_act_state_->Compute(s));                         \
    u = _mm256_sub_ps(_mm256_set1_ps(1.f), u);                                \
    u = _mm256_mul_ps(u, ht0);                                                \
    u = _mm256_add_ps(s, u);                                                  \
    _mm256_storeu_ps(ht, u);                                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype)                       \
  template <>                                                             \
  std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get<            \
      GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
      const std::string& act_gate, const std::string& act_state, int d)

#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_state

#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
  p = std::dynamic_pointer_cast<ker<dtype>>(       \
      std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));

REGISTER_JITKERNEL_ARGS(gru, GRUKernel, JITKERNEL_DECLARE_GRU,
                        JITKERNEL_KEY_GRU, JITKERNEL_NEW_GRU_IMPL);

T
tensor-tang 已提交
476
#undef INTRI8_FLOAT
T
tensor-tang 已提交
477 478 479
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
T
tensor-tang 已提交
480 481 482 483
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle