gpu_launch_config.h 7.9 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Used for compute gpu launch parameter config

#pragma once

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
#else
#include <hip/hip_runtime.h>
#endif

#include <stddef.h>
28

W
Wilber 已提交
29 30 31
#include <algorithm>
#include <string>
#include <vector>
32

33
#include "paddle/phi/backends/gpu/gpu_context.h"
34
#include "paddle/phi/core/enforce.h"
W
Wilber 已提交
35 36 37 38 39

#ifdef __HIPCC__
// HIP results in error or nan if > 256
#define PREDEFINED_BLOCK_SIZE 256
#else
40
// CUDA performs better when thread_per_block is between [64, 512]
W
Wilber 已提交
41 42 43
#define PREDEFINED_BLOCK_SIZE 512
#endif

44
namespace phi {
W
Wilber 已提交
45 46 47
namespace backends {
namespace gpu {

48 49 50 51
template <typename T = int64_t>
inline T DivUp(T a, T b) {
  return (a + b - 1) / b;
}
W
Wilber 已提交
52

53 54 55
// https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
//   for round integer value into next highest power of 2.
inline int64_t RoundToPowerOfTwo(int64_t n) {
W
Wilber 已提交
56 57 58 59 60 61
  n--;
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
62
  int64_t min_val = 32;
W
Wilber 已提交
63
#ifdef __HIPCC__
64
  int64_t max_val = 256;
W
Wilber 已提交
65
#else
66
  int64_t max_val = 1024;
W
Wilber 已提交
67
#endif
68
  return std::min(max_val, std::max(min_val, (n + 1)));
W
Wilber 已提交
69 70 71 72 73
}

#ifdef WITH_NV_JETSON
// The number of threads cannot be assigned 1024 in some cases when the device
// is nano or tx2 .
74
inline void ChangeThreadNum(const phi::GPUContext& context,
W
Wilber 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
                            int* num_thread,
                            int alternative_num_thread = 512) {
  if (context.GetComputeCapability() == 53 ||
      context.GetComputeCapability() == 62) {
    *num_thread = alternative_num_thread;
  }
}
#endif

struct GpuLaunchConfig {
 public:
  GpuLaunchConfig() {}

  size_t GetThreadNum() const { return GetBlockSize() * GetGridSize(); }

  size_t GetGridSize() const {
    return block_per_grid.x * block_per_grid.y * block_per_grid.z;
  }

  size_t GetBlockSize() const {
    return thread_per_block.x * thread_per_block.y * thread_per_block.z;
  }

  int compute_capability = 0;
  dim3 thread_per_block = dim3(1, 1, 1);
  dim3 block_per_grid = dim3(1, 1, 1);
};

/* According to NVIDIA, if number of threads per block is 64/128/256/512,
104 105 106
 * cuda performs better. And number of blocks should be greater (at least
 * 2x~4x) than number of SMs. Hence, SM count is took into account within
 * this function to determine the right number of threads per block. */
107
inline GpuLaunchConfig GetGpuLaunchConfig1D(const phi::GPUContext& context,
W
Wilber 已提交
108 109
                                            int64_t numel,
                                            int vec_size = 1) {
110 111 112
  PADDLE_ENFORCE_GE(numel,
                    0,
                    phi::errors::InvalidArgument(
113 114
                        "numel is expected to be greater than or equal 0,"
                        " but received %d.",
115
                        numel));
116 117 118 119 120
  PADDLE_ENFORCE_GE(
      vec_size,
      1,
      phi::errors::InvalidArgument(
          "vec_size is expected greater than 0, but received %d.", vec_size));
W
Wilber 已提交
121 122
  // Get compute_capability
  const int capability = context.GetComputeCapability();
123
  // If thread number per block is 64/128/256/512, cuda performs better.
W
Wilber 已提交
124 125 126 127 128 129 130 131 132
  int limit_threads =
      std::min(PREDEFINED_BLOCK_SIZE, context.GetMaxThreadsPerBlock());
#ifdef WITH_NV_JETSON
  if (capability == 53 || capability == 62) {
    limit_threads = 512;
  }
#endif
  int threads = limit_threads;
  int sm_count = context.GetSMCount();
133
  int64_t active_threads_num = numel / vec_size;
W
Wilber 已提交
134 135 136 137 138 139 140 141 142 143 144
  if (active_threads_num / (sm_count << 1) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about twice of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 1));
  } else if (active_threads_num / (sm_count << 2) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about 4 times of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 2));
  }
  // Number of threads per block shall be larger than 64.
  threads = std::max(64, threads);
145
  int blocks = DivUp<int64_t>(DivUp<int64_t>(numel, vec_size), threads);
146 147 148 149
  int limit_blocks = context.GetCUDAMaxGridDimSize()[0];
  if (blocks > limit_blocks) {
    blocks = limit_blocks;
  }
W
Wilber 已提交
150 151 152 153 154

  GpuLaunchConfig config;
  config.thread_per_block.x = threads;
  config.block_per_grid.x = blocks;
  config.compute_capability = capability;
155 156 157 158 159

  VLOG(3) << "Get 1-D launch config: numel=" << numel
          << ", vec_size=" << vec_size << ", block_size=" << threads
          << ", grid_size=" << blocks << ", limit_blocks=" << limit_blocks
          << ", limit_threads=" << limit_threads;
W
Wilber 已提交
160 161 162
  return config;
}

163
inline GpuLaunchConfig GetGpuLaunchConfig2D(const phi::GPUContext& context,
W
Wilber 已提交
164 165
                                            int x_dim,
                                            int y_dim) {
166 167 168 169 170 171 172 173 174 175 176 177
  PADDLE_ENFORCE_GT(
      x_dim,
      0,
      phi::errors::InvalidArgument("x dim number should greater than 0,"
                                   " but received value is: %d",
                                   x_dim));
  PADDLE_ENFORCE_GT(
      y_dim,
      0,
      phi::errors::InvalidArgument("y dim number should greater than 0,"
                                   " but received value is: %d",
                                   y_dim));
W
Wilber 已提交
178 179

  const int kThreadsPerBlock = 256;
180 181
  int block_cols = std::min(x_dim, kThreadsPerBlock);
  int block_rows = std::max(kThreadsPerBlock / block_cols, 1);
W
Wilber 已提交
182 183

  int max_physical_threads = context.GetMaxPhysicalThreadCount();
184
  const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1);
W
Wilber 已提交
185 186 187 188 189

  GpuLaunchConfig config;
  // Noticed, block size is not align to 32, if needed do it yourself.
  config.thread_per_block = dim3(block_cols, block_rows, 1);

190 191
  int grid_x = std::min(DivUp<int>(x_dim, block_cols), max_blocks);
  int grid_y = std::min(max_blocks / grid_x, std::max(y_dim / block_rows, 1));
W
Wilber 已提交
192 193 194 195 196

  config.block_per_grid = dim3(grid_x, grid_y, 1);
  return config;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

inline GpuLaunchConfig GetGpuLaunchConfig3D(const phi::GPUContext& context,
                                            int num_img,
                                            int height,
                                            int width) {
  const int kThreadsPerBlock = 256;
  int max_threads_per_block = context.GetMaxThreadsPerBlock();  // 1024
  int max_threads = std::min(kThreadsPerBlock, max_threads_per_block);

  int block_x = std::min(GetLastPow2(width), max_threads);
  int block_y = std::min(GetLastPow2(height), max_threads / block_x);
  int block_z = std::min(num_img, max_threads / block_x / block_y);

218 219 220 221
  std::array<int, 3> max_grid_dim = context.GetCUDAMaxGridDimSize();
  int grid_x = std::min(max_grid_dim[0], DivUp<int>(width, block_x));
  int grid_y = std::min(max_grid_dim[1], DivUp<int>(height, block_y));
  int grid_z = std::min(max_grid_dim[2], DivUp<int>(num_img, block_z * 4));
222 223 224 225 226 227 228 229 230

  const int capability = context.GetComputeCapability();
  GpuLaunchConfig config;
  config.compute_capability = capability;
  config.thread_per_block = dim3(block_x, block_y, block_z);
  config.block_per_grid = dim3(grid_x, grid_y, grid_z);
  return config;
}

W
Wilber 已提交
231 232
}  // namespace gpu
}  // namespace backends
233
}  // namespace phi
W
Wilber 已提交
234 235

#endif