Trainer.cpp 22.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Trainer.h"

#include <stdio.h>

#include <iomanip>
Y
Yu Yang 已提交
20
#include <iostream>
Z
zhangjinchao01 已提交
21
#include <limits>
Y
Yu Yang 已提交
22
#include <sstream>
Z
zhangjinchao01 已提交
23 24 25

#include <google/protobuf/text_format.h>

L
liaogang 已提交
26
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
27
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
28 29 30 31
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"

Y
Yu Yang 已提交
32
#include "RemoteParameterUpdater.h"
Z
zhangjinchao01 已提交
33 34 35
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "TrainerConfigHelper.h"
Y
Yu Yang 已提交
36 37 38
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
Z
zhangjinchao01 已提交
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
DEFINE_string(config, "", "Trainer config file");

DEFINE_int32(test_period,
             0,
             "if equal 0, do test on all test data at the end of "
             "each pass. While if equal non-zero, do test on all test "
             "data every test_period batches");
DEFINE_bool(test_all_data_in_one_period,
            false,
            "This option was deprecated, since we will always do "
            "test on all test set ");

DEFINE_bool(local, true, "Train in local mode or not");

DEFINE_int32(average_test_period,
             0,
             "Do test on average parameter every so"
             " many batches. MUST be devided by FLAGS_log_period."
             " Default 0 means do not test average parameter");

DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
DEFINE_int64(saving_period_by_batches,
             0,
             "Save parameters every so many batches in one pass");
DEFINE_string(save_dir, "", "Directory for saving model parameter");
DEFINE_int32(start_pass,
             0,
             "Start training from this pass. "
             "Will load parameter from the previous pass");
DEFINE_int32(test_pass, -1, "Will load parameter start from this pass to test");
DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
DEFINE_bool(with_cost, true, "enable cost layer or not");
DEFINE_bool(distribute_test, false, "test in distribute mode");

DEFINE_int32(num_passes, 100, "train for so many passes");

DEFINE_string(config_args,
              "",
              "arguments passed to config file."
              "Format: key1=value1,key2=value2");

DEFINE_bool(save_only_one,
            false,
            "Save only parameters in last pass, remove previous.");

DEFINE_string(feat_file, "", "File name of extracted feature.");
DEFINE_string(predict_output_dir,
              "",
              "Directory that saves the predicted results of output layers");
DEFINE_string(model_list, "", "File that saves the model list when evaluation");
Z
zhangjinchao01 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102

namespace paddle {

void Trainer::init(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);

  auto config = TrainerConfigHelper::createFromFlagConfig();
  feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW);

  init(config);
}

103
void Trainer::init(const std::shared_ptr<TrainerConfigHelper>& config,
Z
zhangjinchao01 已提交
104
                   bool testing,
105 106 107
                   const std::shared_ptr<GradientMachine>& gradientMachine,
                   const std::shared_ptr<DataProvider>& dataProvider,
                   const std::shared_ptr<DataProvider>& testDataProvider) {
Z
zhangjinchao01 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
161 162 163 164 165
                 (int*)&mode_,
                 config_->getOptConfig().algorithm(),
                 FLAGS_trainer_count,
                 FLAGS_local,
                 FLAGS_use_gpu)) {
Z
zhangjinchao01 已提交
166 167
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
168 169 170
              config_->getOptConfig().algorithm() ==
                  TrainAlgorithm::AsyncSGD) &&
             useSparseUpdater) {
Z
zhangjinchao01 已提交
171 172 173 174 175 176 177 178
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
179 180
  trainerInternal_.init(config_,
                        gradientMachine,
Z
zhangjinchao01 已提交
181
                        TrainerInternalConfig::createFromMode(mode_),
182 183
                        stats_,
                        testing);
Z
zhangjinchao01 已提交
184
  std::unique_ptr<ParameterUtilConfig> paramConfig(
185 186 187 188
      new ParameterUtilConfig(FLAGS_save_only_one,
                              FLAGS_saving_period,
                              FLAGS_loadsave_parameters_in_pserver,
                              FLAGS_config));
Z
zhangjinchao01 已提交
189 190

  paramUtil_.reset(
191 192 193 194
      new paddle::ParameterUtil(config_,
                                std::move(paramConfig),
                                trainerInternal_.getGradientMachine(),
                                trainerInternal_.getParameterUpdater()));
Z
zhangjinchao01 已提交
195

196 197 198
  bool gpuData =
      FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
      (!IGradientMachineMode::dataMustInCpu(mode_, FLAGS_trainer_count));
Z
zhangjinchao01 已提交
199 200

  dataProvider_ = dataProvider;
X
xuwei06 已提交
201
  if (!dataProvider_ && config_->hasDataConfig() && !testing_) {
202
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
203
  }
E
emailweixu 已提交
204 205
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
221
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
222 223
  }
  if (testDataProvider_) {
E
emailweixu 已提交
224
    createTester();
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
252 253 254
            config_->getConfig().init_model_path(),
            false /*local*/,
            true /*remote*/);
Z
zhangjinchao01 已提交
255 256 257
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
258 259
                                         false /*local*/,
                                         true /*remote*/));
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266 267 268 269 270 271
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
272
  startTrain();
Z
zhangjinchao01 已提交
273 274 275 276
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
277
      trainOnePass();
Z
zhangjinchao01 已提交
278 279 280 281 282 283
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
284
  finishTrain();
Z
zhangjinchao01 已提交
285 286 287
}

static double genPerturbation(real* d, real* grad, size_t dim) {
288
  auto& reng = ThreadLocalRandomEngine::get();
Z
zhangjinchao01 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
310
  trainerInternal_.getGradientMachine()->start();
Z
zhangjinchao01 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost1 = Argument::sumCosts(outArgs);

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost2 = Argument::sumCosts(outArgs);

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
385 386 387 388 389 390 391
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

392
  trainerInternal_.getGradientMachine()->start();
E
emailweixu 已提交
393 394
}

395
void Trainer::finishTrain() { trainerInternal_.getGradientMachine()->finish(); }
E
emailweixu 已提交
396 397 398 399 400 401 402

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
403 404 405 406 407 408 409

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
410
}
Z
zhangjinchao01 已提交
411

E
emailweixu 已提交
412 413 414 415 416 417 418
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
419
      }
E
emailweixu 已提交
420 421 422 423
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
424 425
      trainPassContext_.avgTestCost += tester_->forwardOneBatch(
          dataBatch, averageEvaluator_.get(), &forwardOutput_);
E
emailweixu 已提交
426 427 428 429 430
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
431
    }
E
emailweixu 已提交
432 433 434 435
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
436
        trainPassContext_.batchId, dataBatch, &forwardOutput_);
E
emailweixu 已提交
437
  }
Z
zhangjinchao01 已提交
438

E
emailweixu 已提交
439
  if (averageEvaluator_ &&
440 441
      trainPassContext_.batchId % FLAGS_average_test_period ==
          FLAGS_average_test_period - 1) {
E
emailweixu 已提交
442 443
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
444 445
              << " cost="
              << trainPassContext_.avgTestCost / trainPassContext_.numAvgTests
E
emailweixu 已提交
446 447 448 449
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
450

E
emailweixu 已提交
451
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
452

E
emailweixu 已提交
453 454 455 456 457
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
458

W
wangyanfei01 已提交
459 460 461
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
E
emailweixu 已提交
462
  }
Z
zhangjinchao01 已提交
463

E
emailweixu 已提交
464
  if (FLAGS_saving_period_by_batches > 0 &&
465 466
      trainPassContext_.batchId >
          FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
E
emailweixu 已提交
467 468 469
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
W
wangyanfei01 已提交
470
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
471
    }
472 473
    paramUtil_->saveParametersOnePass(trainPassContext_.passId,
                                      trainPassContext_.passInnerId);
E
emailweixu 已提交
474
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
475
  }
E
emailweixu 已提交
476
}
Z
zhangjinchao01 已提交
477

E
emailweixu 已提交
478 479
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
480 481 482 483
    // This means no more data from DataProvider
    return;
  }

484 485
  trainerInternal_.finishTrainPass(trainPassContext_.passId,
                                   trainPassContext_.batchId);
Z
zhangjinchao01 已提交
486 487 488 489 490 491 492 493 494

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

495 496
  if (trainPassContext_.passId % FLAGS_saving_period == 0 &&
      FLAGS_trainer_id == 0) {
E
emailweixu 已提交
497
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
498
  }
E
emailweixu 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
519 520 521 522 523 524 525 526 527
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
528 529
    trainerInternal_.getGradientMachine()->forwardBackward(
        inArgs, nullptr, PASS_TRAIN, nullptr);
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537 538
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

539
  bool accepted = trainerInternal_.getParameterUpdater()->finishPass();
Z
zhangjinchao01 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

560 561
real Trainer::calcGradient(const DataBatch& dataBatch,
                           const Vector& value,
Z
zhangjinchao01 已提交
562 563 564
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
565
      trainerInternal_.getGradientMachine()->getParameters();
Z
zhangjinchao01 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

586 587
  trainerInternal_.getGradientMachine()->forwardBackward(
      inArgs, &outArgs, PASS_TRAIN);
Z
zhangjinchao01 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  real cost = Argument::sumCosts(outArgs);

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
613
void Trainer::createTester() {
614 615
  tester_.reset(new paddle::Tester(config_,
                                   createTesterConfig(),
E
emailweixu 已提交
616 617 618 619 620
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

621
void Trainer::test() { tester_->test(); }
Z
zhangjinchao01 已提交
622 623 624

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
W
wangyanfei01 已提交
625
  if (FLAGS_test_period) {
Y
Yu Yang 已提交
626 627 628 629
    LOG(WARNING) << "The meaning of --test_period is changed: "
                 << "if equal 0, do test on all test data at the end of "
                 << "each pass. While if equal non-zero, do test on all test "
                 << "data every test_period batches ";
W
wangyanfei01 已提交
630 631
  }
  if (FLAGS_test_all_data_in_one_period) {
Y
Yu Yang 已提交
632 633
    LOG(WARNING) << "--test_all_data_in_one_period was deprecated, since "
                 << "we will always do test on all test set ";
W
wangyanfei01 已提交
634
  }
W
wangyanfei01 已提交
635
  conf->testPeriod = FLAGS_test_period;
Z
zhangjinchao01 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

658
ParameterUtil* Trainer::getParameterUtilPtr() { return paramUtil_.get(); }
Z
zhangjinchao01 已提交
659
}  // namespace paddle