lookup_table_op.cu 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cuda_helper.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
26
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
27 28
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
29
  int idx = threadIdx.x;
30
  int idy = blockIdx.x + threadIdx.y * GridDimX;
31 32

  while (idy < K) {
33
    int64_t id = ids[idy];
34 35
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
36 37
    T* out = output + idy * D;
    const T* tab = table + id * D;
38
    for (int i = idx; i < D; i += BlockDimX) {
39
      if (PaddingFlag) {
40
        if (id == padding_idx)
41 42 43 44 45 46
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
47
    }
48
    idy += BlockDimY * GridDimX;
49 50 51
  }
}

52
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
53 54 55
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
                                const int64_t N, const int64_t K,
                                const int64_t D) {
56
  int idx = threadIdx.x;
57
  int idy = blockIdx.x + threadIdx.y * GridDimX;
58 59 60 61 62

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
63 64
    const T* out = output + idy * D;
    T* tab = table + id * D;
65
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
66
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
67
    }
68
    idy += BlockDimY * GridDimX;
69 70 71 72
  }
}

template <typename T>
Y
Yu Yang 已提交
73
class LookupTableCUDAKernel : public framework::OpKernel<T> {
74 75
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
76
    auto* table_t = context.Input<LoDTensor>("W");
77
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
C
chengduoZH 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    auto* ids_var = context.InputVar("Ids");  // int tensor

    int64_t* ids;
    int64_t K;
    framework::Tensor* output_t;

    // ids_var_types also can be LOD_TENSOR_ARRAY, it's used as concat_rows.
    // Maybe near future we will add concat_rows op.
    if (ids_var->IsType<framework::LoDTensor>()) {
      auto* ids_t = context.Input<LoDTensor>("Ids");
      output_t = context.Output<LoDTensor>("Out");  // float tensor
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
      K = ids_t->numel();
    } else if (ids_var->IsType<framework::SelectedRows>()) {
      auto* ids_t = context.Input<framework::SelectedRows>("Ids");
      output_t = const_cast<framework::Tensor*>(
          &(context.Output<framework::SelectedRows>("Out")
                ->value()));  // float tensor
      ids = const_cast<int64_t*>(ids_t->rows().CUDAData(context.GetPlace()));
      K = ids_t->rows().size();
      output_t->Resize({K, table_t->dims()[1]});
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }
102 103 104

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
F
fengjiayi 已提交
105 106
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
107 108 109

    dim3 threads(128, 8);
    dim3 grids(8, 1);
110 111 112 113 114 115 116 117 118 119 120

    if (padding_idx == -1)
      LookupTable<
          T, 128, 8, 8,
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
    else
      LookupTable<
          T, 128, 8, 8,
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
121 122 123 124
  }
};

template <typename T>
Y
Yu Yang 已提交
125
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
126 127
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
QI JUN 已提交
128 129
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
130
    bool is_sparse = context.Attr<bool>("is_sparse");
131 132
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
133
    if (is_sparse) {
F
fengjiayi 已提交
134 135 136
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
137 138 139 140 141
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

Q
QI JUN 已提交
142
      auto stream = dev_ctx.stream();
143 144 145
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_dim[0]);
D
dzhwinter 已提交
146
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
147

Y
Yu Yang 已提交
148 149 150
      // TODO(yuyang18): Strange code here.
      memory::Copy(platform::CPUPlace(),
                   new_rows.CUDAMutableData(context.GetPlace()), gpu_place,
D
dzhwinter 已提交
151
                   ids_data, ids_dim[0] * sizeof(int64_t), stream);
152 153 154 155 156 157 158 159 160 161 162

      d_table->set_rows(new_rows);

      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto* d_table_data = d_table_value->data<T>();
      auto* d_output_data = d_output->data<T>();
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
163
                   d_output->numel() * sizeof(T), stream);
164 165

    } else {
F
fengjiayi 已提交
166 167 168
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
169 170 171 172 173 174 175 176 177

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
      const int64_t* ids = ids_t->data<int64_t>();
      const T* d_output = d_output_t->data<T>();
      T* d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
178
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
179 180 181

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
182
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
183
          d_table, d_output, ids, N, K, D);
184
    }
185 186 187 188 189 190 191
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
192 193 194 195 196
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
                        ops::LookupTableCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
                        ops::LookupTableGradCUDAKernel<double>);