nce_op.h 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104 105 106 107 108 109 110 111 112 113
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
114 115 116 117 118 119
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
120
    auto sample_labels = context.Output<Tensor>("SampleLabels");
121
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
122
    auto sample_out = context.Output<Tensor>("SampleLogits");
123
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
124 125
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
126
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
127 128 129
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
130
    auto out = context.Output<Tensor>("Cost");
131
    T *out_data = out->mutable_data<T>(context.GetPlace());
132
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
133 134 135
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
136 137
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
138
    // forward bias
W
wanghaoshuang 已提交
139
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
140
    if (bias != nullptr) {
141
      const T *bias_data = bias->data<T>();
142
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
143 144 145
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
146
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
147 148 149 150
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
151
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

    if (!epmap.empty()) {
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
168 169
      framework::Scope &local_scope = context.scope().NewScope();

T
tangwei12 已提交
170 171 172
      auto height_sections = context.Attr<std::vector<int>>("height_sections");
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
173
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
174 175 176 177 178 179 180 181
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

T
tangwei12 已提交
182 183 184 185 186 187 188
      std::vector<int> w_dims = paddle::framework::vectorize2int(
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
189 190

#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
191 192 193
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
                                       table_names, epmap, height_sections,
                                       context, local_scope);
T
tangwei12 已提交
194 195 196 197
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
198
#endif
T
tangwei12 已提交
199

T
tangwei12 已提交
200
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
201
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
202 203 204 205 206 207 208 209 210 211 212 213
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
214
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
215 216 217 218 219 220 221 222 223 224 225
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
226
    }
T
tangwei12 已提交
227

W
wanghaoshuang 已提交
228
    // forward cost
229
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
230 231
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
232 233 234 235 236
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
237 238 239
        out_data[i] += w * cost;
      }
    }
240
    delete sampler;
W
wanghaoshuang 已提交
241 242 243
  }
};

Q
QI JUN 已提交
244
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
245 246
class NCEGradKernel : public framework::OpKernel<T> {
 public:
247
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
248
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
249
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
250 251
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
252
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
253
    auto sample_labels = context.Input<Tensor>("SampleLabels");
254
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
255
    auto sample_weight = context.Input<Tensor>("SampleWeight");
256
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
257 258 259
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
260 261
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
262 263 264 265
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
266 267 268

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
269
    Sampler *sampler;
270 271 272 273 274 275 276 277 278 279
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
280 281 282 283 284 285 286 287 288 289 290 291 292
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
293 294 295 296 297 298
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
299
    Tensor sample_grad;  // tmp tensor
300
    T *sample_grad_data =
W
wanghaoshuang 已提交
301 302
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
303
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
304 305 306
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
307
      T o = sample_out_data[i];
308 309
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
310 311
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
312
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
313
    }
314

315 316 317 318 319 320 321 322 323 324
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
343
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
344
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
345
      }
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
374
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
375
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
376
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
377
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
378 379 380
            sample_grad_data[i];
      }
    }
381

W
wanghaoshuang 已提交
382
    // get d_x
W
wanghaoshuang 已提交
383
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
384
    if (d_x != nullptr) {
385
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
386
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
387
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
388
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
389
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
390
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
391 392 393
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
394

395
    delete sampler;
W
wanghaoshuang 已提交
396 397 398 399
  }
};
}  // namespace operators
}  // namespace paddle