init.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
G
gongweibao 已提交
35
#if defined(PADDLE_WITH_DGC)
36 37 38
#include "dgc/dgc.h"
#endif

39
DECLARE_int32(paddle_num_threads);
40 41 42
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
43

D
dzhwinter 已提交
44 45 46
namespace paddle {
namespace framework {

47 48 49 50
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
51
std::once_flag gflags_init_flag;
X
Xin Pan 已提交
52
std::once_flag p2p_init_flag;
D
dzhwinter 已提交
53

54 55 56 57
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::once_flag dgc_init_flag;
#endif

58
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
59
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
60
    FLAGS_logtostderr = true;
W
wanghaoshuang 已提交
61
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
62 63 64 65 66 67 68 69 70
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
M
minqiyang 已提交
71
    VLOG(1) << "Init commandline: " << line;
D
dzhwinter 已提交
72 73 74
  });
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
90
          platform::CUDADeviceGuard guard(devices[i]);
91 92 93 94 95 96 97 98
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
121
void InitDevices(bool init_p2p) {
122 123 124
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
125
  /*Init all available devices by default */
126
  std::vector<int> devices;
127
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
128
  try {
129 130
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
131 132
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
133
  }
D
dzhwinter 已提交
134
#endif
135
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
136 137
}

138 139 140 141
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
142 143 144
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
145 146 147
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
148

149 150 151 152 153 154 155
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
156

157
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
158
  platform::SetNumThreads(FLAGS_paddle_num_threads);
159
#endif
T
tensor-tang 已提交
160

T
tensor-tang 已提交
161
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
162
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
163 164 165 166
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
167 168 169 170 171 172 173 174 175 176

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
177 178
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
179
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
180
    } else if (platform::MayIUse(platform::avx)) {
181 182 183 184 185
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
186
#endif
187 188

#ifdef __AVX2__
T
tensor-tang 已提交
189 190
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
191 192 193 194
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
195 196
  }
#endif
197 198

#ifdef __AVX__
T
tensor-tang 已提交
199
  if (!platform::MayIUse(platform::avx)) {
200
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
201
  }
202 203
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
204 205

#endif
206 207
}

C
chengduo 已提交
208
#ifndef _WIN32
209
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
210 211
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
212
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
213 214 215 216 217 218 219 220 221
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
222
void InitGLOG(const std::string &prog_name) {
Y
Yang Yu 已提交
223 224 225
  // glog will not hold the ARGV[0] inside.
  // Use strdup to alloc a new string.
  google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
226 227 228 229
#ifndef _WIN32
  google::InstallFailureSignalHandler();
  google::InstallFailureWriter(&SignalHandle);
#endif
Y
Yang Yu 已提交
230 231
}

G
gongweibao 已提交
232
#if defined(PADDLE_WITH_DGC)
233 234 235 236 237 238 239 240 241
void InitDGC() {
  std::call_once(dgc_init_flag, []() {
    PADDLE_ENFORCE(paddle::communication::dgc::dynloadNcclLib());
  });
}
#else
void InitDGC() {}
#endif

D
dzhwinter 已提交
242 243
}  // namespace framework
}  // namespace paddle