tensor_util.h 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18 19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
D
dzhwinter 已提交
22 23 24 25

namespace paddle {
namespace framework {

C
chengduo 已提交
26 27 28 29 30 31
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
Y
Yi Wang 已提交
32
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
33
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
34 35 36 37 38 39 40 41

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
42 43
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
44

F
fengjiayi 已提交
45 46
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
47

Y
Yi Wang 已提交
48 49 50 51 52
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
53

Y
Yi Wang 已提交
54 55 56 57 58
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
59

60
// copy the result bool to cpu
Y
Yi Wang 已提交
61 62
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
63 64 65 66 67 68
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
69

Y
Yi Wang 已提交
70 71 72 73
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
D
dzhwinter 已提交
74

Y
Yi Wang 已提交
75 76 77
//
// The implementation of template functions.
//
D
dzhwinter 已提交
78

D
dzhwinter 已提交
79
template <typename T>
Y
Yi Wang 已提交
80 81
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, src_place,
                 src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
D
dzhwinter 已提交
96
        boost::get<platform::CUDAPlace>(dst_place), dst_ptr, src_place, src_ptr,
D
dzhwinter 已提交
97 98 99 100 101 102
        size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
103
template <typename T>
Y
Yi Wang 已提交
104
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
105 106 107 108 109 110 111 112 113 114
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

D
dzhwinter 已提交
115
template <typename T>
Y
Yi Wang 已提交
116 117
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
118 119 120 121 122 123 124 125
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
126 127
    memory::Copy(dst_place, dst_ptr,
                 boost::get<platform::CPUPlace>(src.place()), src_ptr, size);
D
dzhwinter 已提交
128 129 130 131
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
D
dzhwinter 已提交
132
        dst_place, dst_ptr, boost::get<platform::CUDAPlace>(src.place()),
133
        src_ptr, size,
D
dzhwinter 已提交
134 135 136 137 138
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
139
template <typename T>
Y
Yi Wang 已提交
140
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
141 142 143 144 145 146 147
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

148
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(src.place()), true);
D
dzhwinter 已提交
149 150 151 152

  memory::Copy(dst_place, dst_ptr, boost::get<platform::CPUPlace>(src.place()),
               src_ptr, size);
}
153 154

std::ostream& operator<<(std::ostream& os, const Tensor& t);
D
dzhwinter 已提交
155 156
}  // namespace framework
}  // namespace paddle