“43a89a9520dc546442cb037a6c4e93c3e011a52c”上不存在“ppcls/arch/backbone/model_zoo/se_resnet_vd.py”
test_batch_sampler.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest

19
import numpy as np
20
import paddle.fluid as fluid
21 22
from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, \
                        RandomSampler, WeightedRandomSampler
23
from paddle.io import DistributedBatchSampler
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


class RandomDataset(Dataset):
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestSampler(unittest.TestCase):
    def test_main(self):
        dataset = RandomDataset(100, 10)
        sampler = Sampler(dataset)
        try:
            iter(sampler)
            self.assertTrue(False)
        except NotImplementedError:
            pass


class TestSequenceSampler(unittest.TestCase):
    def test_main(self):
        dataset = RandomDataset(100, 10)
        sampler = SequenceSampler(dataset)
        assert len(sampler) == 100

        for i, index in enumerate(iter(sampler)):
            assert i == index


class TestRandomSampler(unittest.TestCase):
    def test_main(self):
        dataset = RandomDataset(100, 10)
        sampler = RandomSampler(dataset)
        assert len(sampler) == 100

        rets = []
        for i in iter(sampler):
            rets.append(i)
        assert tuple(sorted(rets)) == tuple(range(0, 100))

    def test_with_num_samples(self):
        dataset = RandomDataset(100, 10)
        sampler = RandomSampler(dataset, num_samples=50, replacement=True)
        assert len(sampler) == 50

        rets = []
        for i in iter(sampler):
            rets.append(i)
            assert i >= 0 and i < 100

    def test_with_generator(self):
        dataset = RandomDataset(100, 10)
        generator = iter(range(0, 60))
        sampler = RandomSampler(dataset, generator=generator)
        assert len(sampler) == 100

        rets = []
        for i in iter(sampler):
            rets.append(i)
        assert tuple(sorted(rets)) == tuple(range(0, 60))

94 95 96 97 98 99 100 101 102 103 104 105
    def test_with_generator_num_samples(self):
        dataset = RandomDataset(100, 10)
        generator = iter(range(0, 60))
        sampler = RandomSampler(
            dataset, generator=generator, num_samples=50, replacement=True)
        assert len(sampler) == 50

        rets = []
        for i in iter(sampler):
            rets.append(i)
        assert tuple(sorted(rets)) == tuple(range(0, 50))

106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
class TestBatchSampler(unittest.TestCase):
    def setUp(self):
        self.num_samples = 1000
        self.num_classes = 10
        self.batch_size = 32
        self.shuffle = False
        self.drop_last = False

    def init_batch_sampler(self):
        dataset = RandomDataset(self.num_samples, self.num_classes)
        bs = BatchSampler(
            dataset=dataset,
            batch_size=self.batch_size,
            shuffle=self.shuffle,
            drop_last=self.drop_last)
        return bs

    def test_main(self):
        bs = self.init_batch_sampler()
        # length check
        bs_len = (self.num_samples + int(not self.drop_last) \
                * (self.batch_size - 1)) // self.batch_size
        self.assertTrue(bs_len == len(bs))

        # output indices check
        if not self.shuffle:
            index = 0
            for indices in bs:
                for idx in indices:
                    self.assertTrue(index == idx)
                    index += 1


class TestBatchSamplerDropLast(TestBatchSampler):
    def setUp(self):
        self.num_samples = 1000
        self.num_classes = 10
        self.batch_size = 32
        self.shuffle = False
        self.drop_last = True


class TestBatchSamplerShuffle(TestBatchSampler):
    def setUp(self):
        self.num_samples = 1000
        self.num_classes = 10
        self.batch_size = 32
        self.shuffle = True
        self.drop_last = True


158
class TestBatchSamplerWithSampler(TestBatchSampler):
159
    def init_batch_sampler(self):
160 161
        dataset = RandomDataset(1000, 10)
        sampler = SequenceSampler(dataset)
162
        bs = BatchSampler(
163
            sampler=sampler,
164 165 166 167 168
            batch_size=self.batch_size,
            drop_last=self.drop_last)
        return bs


169
class TestBatchSamplerWithSamplerDropLast(unittest.TestCase):
170 171 172 173 174 175 176
    def setUp(self):
        self.num_samples = 1000
        self.num_classes = 10
        self.batch_size = 32
        self.shuffle = False
        self.drop_last = True

177 178 179 180 181 182 183 184 185

class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
    def setUp(self):
        self.num_samples = 1000
        self.num_classes = 10
        self.batch_size = 32
        self.shuffle = True
        self.drop_last = True

186 187 188
    def test_main(self):
        try:
            dataset = RandomDataset(self.num_samples, self.num_classes)
189
            sampler = RandomSampler(dataset)
190
            bs = BatchSampler(
191 192
                sampler=sampler,
                shuffle=self.shuffle,
193 194 195 196 197 198 199
                batch_size=self.batch_size,
                drop_last=self.drop_last)
            self.assertTrue(False)
        except AssertionError:
            pass


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
class TestWeightedRandomSampler(unittest.TestCase):
    def init_probs(self, total, pos):
        pos_probs = np.random.random((pos, )).astype('float32')
        probs = np.zeros((total, )).astype('float32')
        probs[:pos] = pos_probs
        np.random.shuffle(probs)
        return probs

    def test_replacement(self):
        probs = self.init_probs(20, 10)
        sampler = WeightedRandomSampler(probs, 30, True)
        assert len(sampler) == 30
        for idx in iter(sampler):
            assert probs[idx] > 0.

    def test_no_replacement(self):
        probs = self.init_probs(20, 10)
        sampler = WeightedRandomSampler(probs, 10, False)
        assert len(sampler) == 10
        idxs = []
        for idx in iter(sampler):
            assert probs[idx] > 0.
            idxs.append(idx)
        assert len(set(idxs)) == len(idxs)

    def test_assert(self):
        # all zeros
        probs = np.zeros((10, )).astype('float32')
        sampler = WeightedRandomSampler(probs, 10, True)
        try:
            for idx in iter(sampler):
                pass
            self.assertTrue(False)
        except AssertionError:
            self.assertTrue(True)

        # not enough pos
        probs = self.init_probs(10, 5)
        sampler = WeightedRandomSampler(probs, 10, False)
        try:
            for idx in iter(sampler):
                pass
            self.assertTrue(False)
        except AssertionError:
            self.assertTrue(True)

        # neg probs
        probs = -1.0 * np.ones((10, )).astype('float32')
        sampler = WeightedRandomSampler(probs, 10, True)
        try:
            for idx in iter(sampler):
                pass
            self.assertTrue(False)
        except AssertionError:
            self.assertTrue(True)

    def test_raise(self):
        # float num_samples
        probs = self.init_probs(10, 5)
        try:
            sampler = WeightedRandomSampler(probs, 2.3, True)
            self.assertTrue(False)
        except ValueError:
            self.assertTrue(True)

        # neg num_samples
        probs = self.init_probs(10, 5)
        try:
            sampler = WeightedRandomSampler(probs, -1, True)
            self.assertTrue(False)
        except ValueError:
            self.assertTrue(True)

        # no-bool replacement
        probs = self.init_probs(10, 5)
        try:
            sampler = WeightedRandomSampler(probs, 5, 5)
            self.assertTrue(False)
        except ValueError:
            self.assertTrue(True)
280 281


282 283
if __name__ == '__main__':
    unittest.main()