pool_op.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

43 44 45 46 47 48 49
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83 84
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86 87 88
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90 91
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94 95 96 97
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout_ = framework::DataLayout::kMKLDNN;
99
  }
100
#endif
101 102 103 104 105 106

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

107 108 109 110 111 112 113
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

114 115
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
116
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
117 118 119
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
120
#ifdef PADDLE_WITH_CUDA
121 122
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
123 124
  }
#endif
125 126 127 128
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
129
    layout_ = framework::DataLayout::kMKLDNN;
130
  }
131
#endif
132

K
Kexin Zhao 已提交
133 134 135 136 137 138 139
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
140 141
}

Y
Yu Yang 已提交
142
void Pool2dOpMaker::Make() {
143 144
  AddInput(
      "X",
C
chengduoZH 已提交
145
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
146 147 148
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
149
  AddOutput("Out",
K
kexinzhao 已提交
150 151 152 153
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
154
            "and W is the width of the feature.");
155

C
chengduoZH 已提交
156
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
157 158
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
159
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
160
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
161 162
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
163
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
164 165
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
166
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
167
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
168
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
169
                "If global_pooling = true, ksize and paddings will be ignored.")
170
      .SetDefault(false);
K
kexinzhao 已提交
171 172 173
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
174 175
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
176 177 178
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
179
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
180
      "operator."
C
chengduoZH 已提交
181
      "If global_pooling = true, paddings and ksize will be ignored.")
182 183 184 185 186
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
187 188 189
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
190 191
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
192
      .SetDefault(false);
193 194 195
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
196 197 198 199 200 201 202 203
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
204 205

  AddComment(R"DOC(
C
chengduoZH 已提交
206
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
207
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
208 209
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
210 211
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
212 213
The input(X) size and output(Out) size may be different.

214
Example:
F
fengjiayi 已提交
215

C
chengduoZH 已提交
216
  Input:
F
fengjiayi 已提交
217

K
kexinzhao 已提交
218
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
219

C
chengduoZH 已提交
220
  Output:
F
fengjiayi 已提交
221

K
kexinzhao 已提交
222
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
223

224 225
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
226
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
227 228
       $$
       $$
F
fengjiayi 已提交
229
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
230
       $$
231 232
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
233
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
234 235
       $$
       $$
F
fengjiayi 已提交
236
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
237
       $$
K
kexinzhao 已提交
238

239
)DOC");
240 241
}

Y
Yu Yang 已提交
242
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
243 244 245 246 247 248
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
249
  AddOutput("Out",
C
chengduoZH 已提交
250
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
251 252 253
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
254
            "width of the feature, respectively.");
255

C
chengduoZH 已提交
256
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
257
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
258
                       "and \"avg\" for average-pooling.")
259
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
260 261 262 263
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
264
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
265 266
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
267
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
268 269 270 271
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
272
      .SetDefault(false);
K
kexinzhao 已提交
273 274 275 276
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
277 278
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
279 280
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
281
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
282
      "width) of pooling operator. "
C
chengduoZH 已提交
283
      "If global_pooling = true, ksize and paddings will be ignored.")
284 285 286
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

287 288 289 290
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
291 292 293
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
294 295
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
296
      .SetDefault(false);
297 298 299
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
300 301 302 303 304 305 306 307 308
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

309
  AddComment(R"DOC(
K
kexinzhao 已提交
310 311
Pool3d Operator.

C
chengduoZH 已提交
312
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
313
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
314 315
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
316 317
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
318
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
319 320 321

Example:
  Input:
K
kexinzhao 已提交
322
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
323
  Output:
K
kexinzhao 已提交
324
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
325
  For ceil_mode = false:
C
chengduoZH 已提交
326 327 328 329 330
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
331 332 333 334 335 336
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
337

338
)DOC");
339
}
340 341 342 343 344
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
345
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
346 347
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
348

Q
QI JUN 已提交
349 350 351 352 353
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
354
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
355

Y
Yang Yang 已提交
356
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
357 358
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
359

Q
QI JUN 已提交
360 361 362 363 364 365
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);