api_impl.cc 10.2 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/platform/cpu_helper.h"
28 29 30
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
31 32

namespace paddle {
33 34 35 36 37 38 39 40 41 42
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
43

44 45 46 47
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
48
      if (feeds_.size() <= static_cast<size_t>(idx)) {
49 50 51 52 53 54
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
55
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
56 57 58 59 60 61 62
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
63 64
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
65
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
66
#if !defined(_WIN32)
67 68 69 70 71 72 73 74
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
75
#endif
76

77
  // no matter with or without MKLDNN
L
luotao1 已提交
78
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
79

Y
Yan Chunwei 已提交
80
  if (config_.use_gpu) {
X
Xin Pan 已提交
81 82 83 84
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
85 86 87
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
88
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
89 90 91 92
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
93

X
Xin Pan 已提交
94
  executor_.reset(new paddle::framework::Executor(place_));
95

X
Xin Pan 已提交
96 97 98 99
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
100 101
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
102 103 104 105 106 107 108
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
109
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
110 111
    return false;
  }
112

X
Xin Pan 已提交
113
  ctx_ = executor_->Prepare(*inference_program_, 0);
114 115
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
116

X
Xin Pan 已提交
117
  // Get the feed_target_names and fetch_target_names
118
  PrepareFeedFetch();
X
Xin Pan 已提交
119 120 121
  return true;
}

122
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
123
#if !defined(_WIN32)
124 125 126 127
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
128
#endif
129 130 131
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
132
}
133

Y
Yan Chunwei 已提交
134
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
135 136
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
137
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
138 139 140
  Timer timer;
  timer.tic();
  // set feed variable
141
  std::vector<framework::LoDTensor> feeds;
142 143
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
144 145 146 147 148
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
149
  VLOG(4) << "Run prepared context";
150 151
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
152
                                false /* don't create variable each time */);
153
  VLOG(4) << "Finish prepared context";
154 155
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
156
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
157 158
    return false;
  }
159
  VLOG(30) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
160 161 162 163

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
X
Xin Pan 已提交
164 165 166
  return true;
}

Y
Yan Chunwei 已提交
167
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
168
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
169 170
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

171
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
172
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
173 174
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
175 176 177 178
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
179 180
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
181
#endif
X
Xin Pan 已提交
182 183
}

Y
Yan Chunwei 已提交
184
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
185
                                    framework::Scope *scope) {
186
  VLOG(3) << "Predictor::set_feed";
187
  if (inputs.size() != feeds_.size()) {
188 189
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
190 191
    return false;
  }
192
  for (size_t i = 0; i < inputs.size(); ++i) {
193 194
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
195 196
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
197
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
198
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
199
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
200 201 202 203 204 205
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
206
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
207
                inputs[i].data.length());
Y
Yan Chunwei 已提交
208 209 210 211 212 213
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
214 215
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
216
      idx = feed_names_[inputs[i].name];
217 218 219 220
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
221 222 223
  }
  return true;
}
L
luotao1 已提交
224 225 226
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
227 228 229 230 231 232 233 234 235 236 237 238 239 240
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
241 242
  }
}
X
Xin Pan 已提交
243

244 245
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
246
  VLOG(3) << "Predictor::get_fetch";
247 248 249
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
250 251
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
252
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
253 254 255 256 257 258 259 260
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
261
    } else {
L
luotao1 已提交
262
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
263
    }
X
Xin Pan 已提交
264 265 266 267
  }
  return true;
}

268
template <>
269 270
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
271
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
272 273
  if (config.use_gpu) {
    // 1. GPU memeroy
274
    PADDLE_ENFORCE_GT(
275
        config.fraction_of_gpu_memory, 0.f,
276
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
277
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
278 279 280 281 282
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
283
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
284
      flags.push_back(flag);
285
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
286 287
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
288
  }
289

Y
Yan Chunwei 已提交
290
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
291
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
292 293
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
294
#ifdef __clang__
J
Jiabin Yang 已提交
295
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
296 297
  return predictor;
#else
298
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
299
#endif
X
Xin Pan 已提交
300 301
}

Y
Yan Chunwei 已提交
302 303 304 305 306 307
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
308
}  // namespace paddle