sparse_blas_impl.cu.h 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/memory/malloc.h"
#include "paddle/phi/backends/dynload/cusparse.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
23
#include "paddle/phi/core/enforce.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/visit_type.h"

namespace phi {
namespace funcs {
namespace sparse {

template <typename T>
cudaDataType_t GetGpuDataType() {
  if (std::is_same<T, float>::value) {
    return CUDA_R_32F;
  } else if (std::is_same<T, double>::value) {
    return CUDA_R_64F;
  } else if (std::is_same<T, phi::dtype::float16>::value) {
    return CUDA_R_16F;
  }
}

inline cusparseOperation_t GetTransposeOperation(const bool trans) {
  if (trans) {
    return CUSPARSE_OPERATION_TRANSPOSE;
  } else {
    return CUSPARSE_OPERATION_NON_TRANSPOSE;
  }
}

51 52 53 54 55 56 57 58 59
inline cusparseSpMMAlg_t GetSpMMAlgorithm(const SparseCsrTensor& x) {
  // TODO(zhouwei): will change to 'CUSPARSE_SPMM_CSR_ALG2' when support batch
  return CUSPARSE_SPMM_CSR_ALG2;
}

inline cusparseSpMMAlg_t GetSpMMAlgorithm(const SparseCooTensor& x) {
  return CUSPARSE_SPMM_ALG_DEFAULT;
}

60 61
/************* SPARSE MATRIX DESCRIPTOR (COO/CSR) ************/

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
template <typename T, typename IntT>
inline void CreateCsrDescriptor(const phi::SparseCsrTensor& x,
                                const phi::GPUContext& dev_ctx,
                                cusparseSpMatDescr_t* descriptor) {
  std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
  auto x_ndims = xdim_vec.size();
  PADDLE_ENFORCE_GE(
      x_ndims,
      2,
      phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be "
                                   "greater than or eaqual to 2."));
  int64_t M = xdim_vec[x_ndims - 2];
  int64_t N = xdim_vec[x_ndims - 1];
  int batch_size = 1;
  for (int i = 0; i < x_ndims - 2; i++) {
    batch_size *= xdim_vec[i];
  }
  PADDLE_ENFORCE_EQ(x.non_zero_crows().numel(),
                    batch_size * (M + 1),
                    phi::errors::PreconditionNotMet(
                        "the length of SparseCsrTensor crows is not right."));

  const IntT* crows_data = x.non_zero_crows().data<IntT>();
  const IntT* cols_data = x.non_zero_cols().data<IntT>();
  const T* values_data = x.non_zero_elements().data<T>();

  int64_t batch_nnz = x.nnz() / batch_size;
  cudaDataType_t gpu_type = GetGpuDataType<T>();
  dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseCreateCsr(descriptor,
                                    M,
                                    N,
                                    batch_nnz,
                                    const_cast<IntT*>(crows_data),
                                    const_cast<IntT*>(cols_data),
                                    const_cast<T*>(values_data),
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_BASE_ZERO,
                                    gpu_type);
  });
  if (batch_size > 1) {
#if CUDA_VERSION >= 11070
    dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCsrSetStridedBatch(
          *descriptor, batch_size, M + 1, batch_nnz);
    });
#else
    PADDLE_THROW(phi::errors::Unimplemented(
        "Batch Sparse matmul use 'cusparseCsrSetStridedBatch', which is "
        "supported from CUDA 11.7"));
#endif
  }
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
template <typename T, typename IntT>
inline void CreateCooDescriptor(const phi::SparseCooTensor& x,
                                const phi::GPUContext& dev_ctx,
                                cusparseSpMatDescr_t* descriptor) {
  std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
  auto x_ndims = xdim_vec.size();
  PADDLE_ENFORCE_GE(
      x_ndims,
      2,
      phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be "
                                   "greater than or eaqual to 2."));

  int64_t M = xdim_vec[x_ndims - 2];
  int64_t N = xdim_vec[x_ndims - 1];
  int batch_size = 1;
  for (int i = 0; i < x_ndims - 2; i++) {
    batch_size *= xdim_vec[i];
  }
  int64_t nnz = x.nnz();

  const IntT* indices_data = x.non_zero_indices().data<IntT>();
  const T* values_data = x.non_zero_elements().data<T>();
  auto rows_data = indices_data + (x_ndims - 2) * nnz;
  auto cols_data = indices_data + (x_ndims - 1) * nnz;

  int64_t batch_nnz = nnz / batch_size;
  cudaDataType_t gpu_type = GetGpuDataType<T>();
  dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseCreateCoo(descriptor,
                                    M,
                                    N,
                                    batch_nnz,
                                    const_cast<IntT*>(rows_data),
                                    const_cast<IntT*>(cols_data),
                                    const_cast<T*>(values_data),
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_BASE_ZERO,
                                    gpu_type);
  });

  if (batch_size > 1) {
#if CUDA_VERSION >= 11070
    dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCooSetStridedBatch(
          *descriptor, batch_size, batch_nnz);
    });
#else
    PADDLE_THROW(phi::errors::Unimplemented(
        "Batch Sparse matmul use 'cusparseCooSetStridedBatch', which is "
        "supported from CUDA 11.7"));
#endif
  }
}

171 172 173 174 175 176 177
template <typename T>
class CuSparseSpMatDescriptor {
 public:
  explicit CuSparseSpMatDescriptor(const phi::SparseCsrTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    PD_VISIT_INTEGRAL_TYPES(
178
        x.non_zero_crows().dtype(), "Csr CuSparseSpMatDescriptor", ([&] {
179
          CreateCsrDescriptor<T, data_t>(x, dev_ctx_, &descriptor_);
180
        }));
181
    VLOG(6) << "Create csr cusparseSpMatDescr_t " << &descriptor_;
182 183
  }

184 185 186 187 188 189 190 191 192 193
  explicit CuSparseSpMatDescriptor(const phi::SparseCooTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    PD_VISIT_INTEGRAL_TYPES(
        x.non_zero_indices().dtype(), "Coo CuSparseSpMatDescriptor", ([&] {
          CreateCooDescriptor<T, data_t>(x, dev_ctx_, &descriptor_);
        }));
    VLOG(6) << "Create coo cusparseSpMatDescr_t " << &descriptor_;
  }

194 195 196 197 198 199 200 201 202 203 204 205 206 207
  ~CuSparseSpMatDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroySpMat(descriptor_);
    });
    VLOG(6) << "Destroy cusparseSpMatDescr_t " << &descriptor_;
  }

  const cusparseSpMatDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseSpMatDescr_t descriptor_;
};

208
/************* DENSE MATRIX DESCRIPTOR ************/
209 210 211 212 213 214 215 216
template <typename T>
class CuSparseDnMatDescriptor {
 public:
  explicit CuSparseDnMatDescriptor(const phi::DenseTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
    auto x_ndims = xdim_vec.size();
217 218 219 220 221 222
    PADDLE_ENFORCE_GE(
        x_ndims,
        2,
        phi::errors::InvalidArgument("the dim size of DenseTensor must be "
                                     "greater than or eaqual to 2."));

223 224 225 226 227 228 229
    int64_t M = xdim_vec[x_ndims - 2];
    int64_t N = xdim_vec[x_ndims - 1];
    int batch_size = 1;
    for (int i = 0; i < x_ndims - 2; i++) {
      batch_size *= xdim_vec[i];
    }

230
    const T* x_data = x.data<T>();
231 232 233 234 235 236 237 238 239 240 241 242 243
    cudaDataType_t gpu_type = GetGpuDataType<T>();
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCreateDnMat(&descriptor_,
                                        M,
                                        N,
                                        N,
                                        const_cast<T*>(x_data),
                                        gpu_type,
                                        CUSPARSE_ORDER_ROW);
    });

    PADDLE_ENFORCE_EQ(x.numel(), batch_size * M * N);
    if (batch_size > 1) {
244
#if CUDA_VERSION >= 11070
245 246 247 248
      dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
        phi::dynload::cusparseDnMatSetStridedBatch(
            descriptor_, batch_size, M * N);
      });
249 250 251 252 253
#else
      PADDLE_THROW(phi::errors::Unimplemented(
          "Batch Sparse matmul use 'cusparseDnMatSetStridedBatch', which is "
          "supported from CUDA 11.7"));
#endif
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    }
    VLOG(6) << "Create cusparseDnMatDescr_t " << &descriptor_;
  }

  ~CuSparseDnMatDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroyDnMat(descriptor_);
    });
    VLOG(6) << "Destroy cusparseDnMatDescr_t " << &descriptor_;
  }

  const cusparseDnMatDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseDnMatDescr_t descriptor_;
};

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/************* DENSE VECTOR DESCRIPTOR ************/
template <typename T>
class CuSparseDnVecDescriptor {
 public:
  explicit CuSparseDnVecDescriptor(const phi::DenseTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
    auto x_ndims = xdim_vec.size();
    PADDLE_ENFORCE_GE(x_ndims,
                      1,
                      phi::errors::InvalidArgument(
                          "the dim size of Vec must be eaqual to 1."));

    const T* x_data = x.data<T>();
    cudaDataType_t gpu_type = GetGpuDataType<T>();
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCreateDnVec(
          &descriptor_, x.numel(), const_cast<T*>(x_data), gpu_type);
    });

    VLOG(6) << "Create cusparseDnVecDescr_t " << &descriptor_;
  }

  ~CuSparseDnVecDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroyDnVec(descriptor_);
    });
    VLOG(6) << "Destroy cusparseDnVecDescr_t " << &descriptor_;
  }

  const cusparseDnVecDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseDnVecDescr_t descriptor_;
};

310
/************* SPARSE*DENSE->DENSE MATMUL ************/
311
template <>
312 313 314 315 316 317 318 319
template <typename T, typename TensorType>
void SparseBlas<phi::GPUContext>::SPMM(bool transa,
                                       bool transb,
                                       T alpha,
                                       const TensorType& mat_a,
                                       const phi::DenseTensor& mat_b,
                                       T beta,
                                       phi::DenseTensor* mat_out) const {
320 321
  auto a_descriptor = CuSparseSpMatDescriptor<T>(mat_a, dev_ctx_);
  auto b_descriptor = CuSparseDnMatDescriptor<T>(mat_b, dev_ctx_);
322
  auto out_descriptor = CuSparseDnMatDescriptor<T>(*mat_out, dev_ctx_);
323

324
  cudaDataType_t gpu_type = GetGpuDataType<T>();
325 326 327 328 329 330 331 332 333
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMM_bufferSize(handle,
                                          GetTransposeOperation(transa),
                                          GetTransposeOperation(transb),
                                          &alpha,
                                          a_descriptor.descriptor(),
                                          b_descriptor.descriptor(),
                                          &beta,
334
                                          out_descriptor.descriptor(),
335
                                          gpu_type,
336
                                          GetSpMMAlgorithm(mat_a),
337 338 339 340 341 342 343 344 345 346 347 348 349 350
                                          &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMM(handle,
                               GetTransposeOperation(transa),
                               GetTransposeOperation(transb),
                               &alpha,
                               a_descriptor.descriptor(),
                               b_descriptor.descriptor(),
                               &beta,
351
                               out_descriptor.descriptor(),
352
                               gpu_type,
353
                               GetSpMMAlgorithm(mat_a),
354 355 356 357
                               tmp_buffer_ptr);
  });
}

358
/************* SPARSE*DENSE->DENSE MV ************/
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
template <>
template <typename T, typename TensorType>
void SparseBlas<phi::GPUContext>::SPMV(bool transa,
                                       T alpha,
                                       const TensorType& mat_a,
                                       const phi::DenseTensor& vec_x,
                                       T beta,
                                       phi::DenseTensor* vec_out) const {
  auto a_descriptor = CuSparseSpMatDescriptor<T>(mat_a, dev_ctx_);
  auto x_descriptor = CuSparseDnVecDescriptor<T>(vec_x, dev_ctx_);
  auto out_descriptor = CuSparseDnVecDescriptor<T>(*vec_out, dev_ctx_);

  cudaDataType_t gpu_type = GetGpuDataType<T>();
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMV_bufferSize(handle,
                                          GetTransposeOperation(transa),
                                          &alpha,
                                          a_descriptor.descriptor(),
                                          x_descriptor.descriptor(),
                                          &beta,
                                          out_descriptor.descriptor(),
                                          gpu_type,
                                          CUSPARSE_MV_ALG_DEFAULT,
                                          &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMV(handle,
                               GetTransposeOperation(transa),
                               &alpha,
                               a_descriptor.descriptor(),
                               x_descriptor.descriptor(),
                               &beta,
                               out_descriptor.descriptor(),
                               gpu_type,
                               CUSPARSE_MV_ALG_DEFAULT,
                               tmp_buffer_ptr);
  });
}

403
/************* DENSE*DENSE->SPARSE MATMUL ************/
404 405
#if CUDA_VERSION >= 11030
template <>
406
template <typename T, typename TensorType>
407 408 409 410 411 412
void SparseBlas<phi::GPUContext>::SDDMM(bool transa,
                                        bool transb,
                                        T alpha,
                                        const phi::DenseTensor& mat_a,
                                        const phi::DenseTensor& mat_b,
                                        T beta,
413
                                        TensorType* mat_out) const {
414 415
  auto a_descriptor = CuSparseDnMatDescriptor<T>(mat_a, dev_ctx_);
  auto b_descriptor = CuSparseDnMatDescriptor<T>(mat_b, dev_ctx_);
416
  auto out_descriptor = CuSparseSpMatDescriptor<T>(*mat_out, dev_ctx_);
417

418
  cudaDataType_t gpu_type = GetGpuDataType<T>();
419 420 421 422 423 424 425 426 427
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM_bufferSize(handle,
                                           GetTransposeOperation(transa),
                                           GetTransposeOperation(transb),
                                           &alpha,
                                           a_descriptor.descriptor(),
                                           b_descriptor.descriptor(),
                                           &beta,
428
                                           out_descriptor.descriptor(),
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                                           gpu_type,
                                           CUSPARSE_SDDMM_ALG_DEFAULT,
                                           &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();

  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM_preprocess(handle,
                                           GetTransposeOperation(transa),
                                           GetTransposeOperation(transb),
                                           &alpha,
                                           a_descriptor.descriptor(),
                                           b_descriptor.descriptor(),
                                           &beta,
446
                                           out_descriptor.descriptor(),
447 448 449 450 451 452 453 454 455 456 457 458 459
                                           gpu_type,
                                           CUSPARSE_SDDMM_ALG_DEFAULT,
                                           tmp_buffer_ptr);
  });

  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM(handle,
                                GetTransposeOperation(transa),
                                GetTransposeOperation(transb),
                                &alpha,
                                a_descriptor.descriptor(),
                                b_descriptor.descriptor(),
                                &beta,
460
                                out_descriptor.descriptor(),
461 462 463 464 465 466 467 468 469 470
                                gpu_type,
                                CUSPARSE_SDDMM_ALG_DEFAULT,
                                tmp_buffer_ptr);
  });
}
#endif

}  // namespace sparse
}  // namespace funcs
}  // namespace phi