softmax_with_cross_entropy_op.h 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
20
#include "paddle/fluid/operators/softmax_op.h"
C
caoying03 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

30
template <typename T>
Y
Yu Yang 已提交
31
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
32
 public:
C
caoying03 已提交
33
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(context.GetPlace()), true,
        platform::errors::Unimplemented("This kernel only runs on CPU."));
C
caoying03 已提交
37
    const Tensor* logits = context.Input<Tensor>("Logits");
38
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
39
    Tensor* softmax = context.Output<Tensor>("Softmax");
40
    Tensor* loss = context.Output<Tensor>("Loss");
41 42 43 44 45
    const bool soft_label = context.Attr<bool>("soft_label");

    const int rank = logits->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logits->dims()[axis];
C
caoying03 已提交
46

47 48
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
49

50 51 52 53 54 55 56
    const int n = SizeToAxis(axis, logits->dims());
    const int d = SizeFromAxis(axis, logits->dims());
    Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
    logits_2d.ShareDataWith(*logits).Resize({n, d});
    softmax_2d.ShareDataWith(*softmax).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    loss_2d.ShareDataWith(*loss).Resize({n, d / axis_dim});
D
dengkaipeng 已提交
57

Q
QI JUN 已提交
58 59
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
60
    math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
61
        dev_ctx, axis_dim, &logits_2d, &softmax_2d);
Q
QI JUN 已提交
62
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
63 64
        dev_ctx, &loss_2d, &softmax_2d, &labels_2d, soft_label,
        context.Attr<int>("ignore_index"), axis_dim);
C
caoying03 已提交
65
  }
C
caoying03 已提交
66 67
};

68
template <typename T>
Y
Yu Yang 已提交
69
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
70
 public:
71
  void Compute(const framework::ExecutionContext& context) const override {
72 73 74
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
75 76
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
77 78 79 80 81 82

    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
83

84
    const bool soft_label = context.Attr<bool>("soft_label");
85
    auto ignore_index = context.Attr<int>("ignore_index");
86 87 88 89 90 91 92 93 94 95 96

    const int rank = logit_grad->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logit_grad->dims()[axis];

    const int n = SizeToAxis(axis, logit_grad->dims());
    const int d = SizeFromAxis(axis, logit_grad->dims());
    Tensor logit_grad_2d, labels_2d, out_grad_2d;
    logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim});
97 98 99

    auto out_grad_mat = EigenMatrix<T>::From(out_grad_2d);
    auto logit_grad_mat = EigenMatrix<T>::From(logit_grad_2d);
Q
QI JUN 已提交
100 101
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
102
    if (soft_label) {
103
      auto lbl_mat = EigenMatrix<T>::From(labels_2d);
Q
QI JUN 已提交
104
      logit_grad_mat.device(place) =
105
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)) *
C
caoying03 已提交
106
          (logit_grad_mat - lbl_mat);
107
    } else {
Q
QI JUN 已提交
108
      logit_grad_mat.device(place) =
C
caoying03 已提交
109
          logit_grad_mat *
110
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim));
111

C
caoying03 已提交
112
      const int64_t* label_data = labels->data<int64_t>();
113
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
114
      const T* out_grad_data = out_grad->data<T>();
115 116 117 118
      const int remain = d / axis_dim;
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < remain; j++) {
          int idx = i * remain + j;
119 120 121 122 123 124 125 126
          if (label_data[idx] == ignore_index) {
            for (int k = 0; k < axis_dim; ++k) {
              logit_grad_data[i * d + k * remain + j] = 0;
            }
          } else {
            logit_grad_data[i * d + label_data[idx] * remain + j] -=
                out_grad_data[idx];
          }
127
        }
128
      }
129 130
    }
  }
C
caoying03 已提交
131 132 133 134
};

}  // namespace operators
}  // namespace paddle