movielens.py 7.6 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
Movielens 1-M dataset.

Q
qijun 已提交
17 18
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
19
Movielens 1-M dataset from
Q
qijun 已提交
20 21
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
Q
qijun 已提交
22

Y
Yu Yang 已提交
23
"""
D
dangqingqing 已提交
24

25 26
from __future__ import print_function

27
import numpy as np
Y
Yu Yang 已提交
28
import zipfile
29
import paddle.dataset.common
Y
Yu Yang 已提交
30 31 32
import re
import random
import functools
M
minqiyang 已提交
33
import six
M
minqiyang 已提交
34
import paddle.compat as cpt
Y
Yu Yang 已提交
35

Y
Refine  
Yu Yang 已提交
36 37
__all__ = [
    'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
Y
Your Name 已提交
38 39
    'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info',
    'convert'
Y
Refine  
Yu Yang 已提交
40 41 42
]

age_table = [1, 18, 25, 35, 45, 50, 56]
Y
Yu Yang 已提交
43

Y
Yancey1989 已提交
44 45 46
URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'

Y
Yu Yang 已提交
47 48

class MovieInfo(object):
Q
qijun 已提交
49 50 51
    """
    Movie id, title and categories information are stored in MovieInfo.
    """
Q
qijun 已提交
52

Y
Yu Yang 已提交
53 54 55 56 57 58
    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self):
Q
qijun 已提交
59
        """
Q
qijun 已提交
60
        Get information from a movie.
Q
qijun 已提交
61
        """
Y
Yu Yang 已提交
62 63 64 65 66
        return [
            self.index, [CATEGORIES_DICT[c] for c in self.categories],
            [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
        ]

Y
Yu Yang 已提交
67 68 69 70 71 72 73
    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()

Y
Yu Yang 已提交
74 75

class UserInfo(object):
Q
qijun 已提交
76 77 78
    """
    User id, gender, age, and job information are stored in UserInfo.
    """
Q
qijun 已提交
79

Y
Yu Yang 已提交
80 81 82
    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
Y
Refine  
Yu Yang 已提交
83
        self.age = age_table.index(int(age))
Y
Yu Yang 已提交
84 85 86
        self.job_id = int(job_id)

    def value(self):
Q
qijun 已提交
87
        """
Q
qijun 已提交
88
        Get information from a user.
Q
qijun 已提交
89
        """
Y
Yu Yang 已提交
90 91
        return [self.index, 0 if self.is_male else 1, self.age, self.job_id]

Y
Yu Yang 已提交
92 93 94 95 96 97 98 99
    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
            self.index, "M"
            if self.is_male else "F", age_table[self.age], self.job_id)

    def __repr__(self):
        return str(self)

Y
Yu Yang 已提交
100 101 102 103 104 105 106 107

MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None


def __initialize_meta_info__():
108
    fn = paddle.dataset.common.download(URL, "movielens", MD5)
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119
    global MOVIE_INFO
    if MOVIE_INFO is None:
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        with zipfile.ZipFile(file=fn) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                MOVIE_INFO = dict()
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
M
minqiyang 已提交
120
                        line = cpt.to_text(line, encoding='latin')
Y
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        MOVIE_INFO[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                global MOVIE_TITLE_DICT
                MOVIE_TITLE_DICT = dict()
                for i, w in enumerate(title_word_set):
                    MOVIE_TITLE_DICT[w] = i

                global CATEGORIES_DICT
                CATEGORIES_DICT = dict()
                for i, c in enumerate(categories_set):
                    CATEGORIES_DICT[c] = i

                global USER_INFO
                USER_INFO = dict()
                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
M
minqiyang 已提交
145
                        line = cpt.to_text(line, encoding='latin')
Y
Yu Yang 已提交
146 147 148 149 150 151 152 153
                        uid, gender, age, job, _ = line.strip().split("::")
                        USER_INFO[int(uid)] = UserInfo(
                            index=uid, gender=gender, age=age, job_id=job)
    return fn


def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
    fn = __initialize_meta_info__()
154
    np.random.seed(rand_seed)
Y
Yu Yang 已提交
155 156 157
    with zipfile.ZipFile(file=fn) as package:
        with package.open('ml-1m/ratings.dat') as rating:
            for line in rating:
M
minqiyang 已提交
158
                line = cpt.to_text(line, encoding='latin')
159
                if (np.random.random() < test_ratio) == is_test:
Y
Yu Yang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173
                    uid, mov_id, rating, _ = line.strip().split("::")
                    uid = int(uid)
                    mov_id = int(mov_id)
                    rating = float(rating) * 2 - 5.0

                    mov = MOVIE_INFO[mov_id]
                    usr = USER_INFO[uid]
                    yield usr.value() + mov.value() + [[rating]]


def __reader_creator__(**kwargs):
    return lambda: __reader__(**kwargs)


Y
Refine  
Yu Yang 已提交
174 175
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
Y
Yu Yang 已提交
176 177


Y
Yu Yang 已提交
178
def get_movie_title_dict():
Q
qijun 已提交
179 180 181
    """
    Get movie title dictionary.
    """
Y
Yu Yang 已提交
182 183 184 185
    __initialize_meta_info__()
    return MOVIE_TITLE_DICT


Y
Refine  
Yu Yang 已提交
186 187 188 189 190 191 192 193
def __max_index_info__(a, b):
    if a.index > b.index:
        return a
    else:
        return b


def max_movie_id():
Q
qijun 已提交
194 195 196
    """
    Get the maximum value of movie id.
    """
Y
Refine  
Yu Yang 已提交
197
    __initialize_meta_info__()
M
minqiyang 已提交
198
    return six.moves.reduce(__max_index_info__, list(MOVIE_INFO.values())).index
Y
Refine  
Yu Yang 已提交
199 200 201


def max_user_id():
Q
qijun 已提交
202 203 204
    """
    Get the maximum value of user id.
    """
Y
Refine  
Yu Yang 已提交
205
    __initialize_meta_info__()
M
minqiyang 已提交
206
    return six.moves.reduce(__max_index_info__, list(USER_INFO.values())).index
Y
Refine  
Yu Yang 已提交
207 208


Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
def __max_job_id_impl__(a, b):
    if a.job_id > b.job_id:
        return a
    else:
        return b


def max_job_id():
Q
qijun 已提交
217 218 219
    """
    Get the maximum value of job id.
    """
Y
Yu Yang 已提交
220
    __initialize_meta_info__()
M
minqiyang 已提交
221 222
    return six.moves.reduce(__max_job_id_impl__,
                            list(USER_INFO.values())).job_id
Y
Yu Yang 已提交
223 224 225


def movie_categories():
Q
qijun 已提交
226 227 228
    """
    Get movie categoriges dictionary.
    """
Y
Yu Yang 已提交
229 230 231 232
    __initialize_meta_info__()
    return CATEGORIES_DICT


Y
Yu Yang 已提交
233
def user_info():
Q
qijun 已提交
234 235 236
    """
    Get user info dictionary.
    """
Y
Yu Yang 已提交
237 238 239 240 241
    __initialize_meta_info__()
    return USER_INFO


def movie_info():
Q
qijun 已提交
242 243 244
    """
    Get movie info dictionary.
    """
Y
Yu Yang 已提交
245 246 247 248
    __initialize_meta_info__()
    return MOVIE_INFO


Y
Yu Yang 已提交
249
def unittest():
Y
Refine  
Yu Yang 已提交
250
    for train_count, _ in enumerate(train()()):
Y
Yu Yang 已提交
251
        pass
Y
Refine  
Yu Yang 已提交
252
    for test_count, _ in enumerate(test()()):
Y
Yu Yang 已提交
253 254
        pass

255
    print(train_count, test_count)
Y
Yu Yang 已提交
256 257


258
def fetch():
259
    paddle.dataset.common.download(URL, "movielens", MD5)
R
root 已提交
260 261 262 263 264 265


def convert(path):
    """
    Converts dataset to recordio format
    """
266 267
    paddle.dataset.common.convert(path, train(), 1000, "movielens_train")
    paddle.dataset.common.convert(path, test(), 1000, "movielens_test")
Y
Yancey1989 已提交
268 269


Y
Yu Yang 已提交
270 271
if __name__ == '__main__':
    unittest()