RecurrentGradientMachine.cpp 43.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
#include "paddle/utils/Flags.h"
#include <algorithm>
#include <functional>
#include <dlfcn.h>
#include <limits>
#include <cmath>
#include "RecurrentGradientMachine.h"
#include "NeuralNetwork.h"
#include "paddle/gserver/layers/AgentLayer.h"

P_DEFINE_string(diy_beam_search_prob_so, "", "the diy beam search cost so");

static const char* DIY_CALC_PROB_SYMBOL_NAME = "calc_prob";
static const char* DIY_START_CALC_PROB_SYMBOL_NAME = "start_calc_prob";
static const char* DIY_FINISH_CALC_PROB_SYMBOL_NAME = "finish_calc_prob";

namespace paddle {

/**
 * Start Custom Calculate Probability callback type.
 *
 * @param nNode, nodes: the path will be explored. nNodes is array size.
 *                      nodes is array elements.
 *
 * @return: A custom handler id that will passed to another callback.
 */
typedef int (*DiyStartCalcProbCallback)(size_t nNodes, int* nodes);

/**
 * Doing Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 * @param nNode, nodes: Array. The current path.
 * @param curProb: The current log probability that neural network returns.
 *
 * @return: Log probability which user calculated, it will be updated to this
 *          path.
 * @NOTE: Return -INFINITY will DROP this path IMMEDIATELY!!
 */
typedef real (*DiyCalcProbCallback)(int handler, size_t nNodes, int* nodes,
                                    real curProb, bool atEos);

/**
 * Finish Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 */
typedef void (*DiyStopCalcProbCallback)(int handler);

static DiyCalcProbCallback gDiyProbMethod = nullptr;
static DiyStartCalcProbCallback gDiyProbStart = nullptr;
static DiyStopCalcProbCallback gDiyProbStop = nullptr;
static void* gDiyProbHandle = nullptr;

static void exit_diy_prob() { dlclose(gDiyProbHandle); }

template <typename SymbolType>
static inline SymbolType loadDiySymbol(const char* symbolName) {
  void* sym = dlsym(gDiyProbHandle, symbolName);
  CHECK(sym) << "Cannot load symbol " << symbolName << " from "
             << FLAGS_diy_beam_search_prob_so;
  return reinterpret_cast<SymbolType>(sym);
}

static InitFunction __init__diy_prob_method([] {
  std::string soName = FLAGS_diy_beam_search_prob_so;
  if (!soName.empty()) {
    gDiyProbHandle = dlopen(soName.c_str(), RTLD_LAZY);
    CHECK(gDiyProbHandle) << "Cannot Open DIY Prob So " << soName;
    atexit(exit_diy_prob);
    gDiyProbMethod =
        loadDiySymbol<decltype(gDiyProbMethod)>(DIY_CALC_PROB_SYMBOL_NAME);
    gDiyProbStart =
        loadDiySymbol<decltype(gDiyProbStart)>(DIY_START_CALC_PROB_SYMBOL_NAME);
    gDiyProbStop =
        loadDiySymbol<decltype(gDiyProbStop)>(DIY_FINISH_CALC_PROB_SYMBOL_NAME);
  }
}, std::numeric_limits<int>::max());

class BeamSearchControlCallbacks {
public:
  RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback
      beamSearchCandidateAdjust;
  RecurrentGradientMachine::NormOrDropNodeCallback normOrDropNode;
  RecurrentGradientMachine::DropCallback stopDetermineCandidates;

  //! for gcc46 aggregate initialization is not very well, so we need to
  //! explicit
  BeamSearchControlCallbacks(
      const RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback&
          candidateAdjust,
      const RecurrentGradientMachine::NormOrDropNodeCallback& norm,
      const RecurrentGradientMachine::DropCallback& stop)
      : beamSearchCandidateAdjust(candidateAdjust),
        normOrDropNode(norm),
        stopDetermineCandidates(stop) {}
};

class BeamSearchStatisticsCallbacks {
public:
  RecurrentGradientMachine::EachStepCallback onEachStepStarted;
  RecurrentGradientMachine::EachStepCallback onEachStepStoped;

  BeamSearchStatisticsCallbacks(
      const RecurrentGradientMachine::EachStepCallback& start,
      const RecurrentGradientMachine::EachStepCallback& stop)
      : onEachStepStarted(start), onEachStepStoped(stop) {}
};

RecurrentGradientMachine::RecurrentGradientMachine(
    const std::string& subModelName, NeuralNetwork* rootNetwork)
    : NeuralNetwork(subModelName),
      rootNetwork_(rootNetwork),
      beamSearchCtrlCallbacks_(nullptr),
      beamSearchStatistics_(nullptr) {
  CHECK(!subModelName_.empty());
}

/**
 * bias layer, as input of memory frame 0 will give vector of zeros
 * if bias parameter is not set.
 *
 * boot bias layer create directly in recurrent gradient machine, because:
 *
 * 1. It is only one frame, so it should not be placed in layer group,
 *    which is one instance for every one frame.
 *
 * 2. It is no input layer, so it need resetHeight() before forward(),
 *    and resetHeight() must be called in recurrent gradient machine,
 *    so it's should not be placed in root network.
 */
class BootBiasLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;
  IVectorPtr cpuIds_;

public:
  explicit BootBiasLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
    if (!Layer::init(layerMap, parameterMap)) return false;

    if (biasParameter_) {
      biases_ =
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
    }
    return true;
  }

  void resetHeight(int height) {
    if (config_.has_bos_id()) {  // used as a constant id layerConfig
      IVector::resizeOrCreate(output_.ids, height, useGpu_);
      output_.ids->reset((int)config_.bos_id());
    } else {
      resetOutput(height, getSize());
    }
  }

  virtual void forward(PassType passType) {
    if (biases_) {
      MatrixPtr outV = getOutputValue();
      outV->addBias(*(biases_->getW()), 1);
      forwardActivation();
    }
  }

  virtual void backward(const UpdateCallback& callback) {
    if (biases_) {
      backwardActivation();
      biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
};

void RecurrentGradientMachine::init(
    const ModelConfig& config, ParamInitCallback callback,
    const std::vector<ParameterType>& parameterTypes, bool useGpu) {
  NeuralNetwork::init(config, callback, parameterTypes, useGpu);
  useGpu_ = useGpu;

  auto subModelConfig =
      std::find_if(config.sub_models().begin(), config.sub_models().end(),
                   [this](const SubModelConfig& sub_model) {
                     return sub_model.name() == this->subModelName_;
                   });
  CHECK(subModelConfig != config.sub_models().end());
  reversed_ = subModelConfig->reversed();

  inFrameLines_.resize(subModelConfig->in_links_size());
  for (size_t i = 0; i < inFrameLines_.size(); ++i) {
    inFrameLines_[i].linkName = subModelConfig->in_links(i).link_name();
    inFrameLines_[i].inLayer =
        rootNetwork_->getLayer(subModelConfig->in_links(i).layer_name());
    inFrameLines_[i].hasSubseq = subModelConfig->in_links(i).has_subseq();
  }

  outFrameLines_.resize(subModelConfig->out_links_size());
  for (size_t i = 0; i < outFrameLines_.size(); ++i) {
    auto& linkPair = subModelConfig->out_links(i);
    outFrameLines_[i].layerName = linkPair.layer_name();
    outFrameLines_[i].agentLayer = rootNetwork_->getLayer(linkPair.link_name());
  }

  memoryFrameLines_.resize(subModelConfig->memories_size());
  for (size_t i = 0; i < memoryFrameLines_.size(); ++i) {
    auto& memoryConfig = subModelConfig->memories(i);
    memoryFrameLines_[i].layerName = memoryConfig.layer_name();
    memoryFrameLines_[i].linkName = memoryConfig.link_name();
    auto agentConfig =
        std::find_if(config.layers().begin(), config.layers().end(),
                     [&memoryConfig](const LayerConfig& layerConfig) {
                       return layerConfig.name() == memoryConfig.link_name();
                     });
    CHECK(agentConfig != config.layers().end());
    if (memoryConfig.has_boot_layer_name()) {
      memoryFrameLines_[i].rootLayer =
          rootNetwork_->getLayer(memoryConfig.boot_layer_name());

      LayerConfig scatterConfig = *agentConfig;
      memoryFrameLines_[i].is_sequence = memoryConfig.is_sequence();
      memoryFrameLines_[i].rootAgent.reset(
          memoryConfig.is_sequence()
              ? new SequenceScatterAgentLayer(scatterConfig)
              : new ScatterAgentLayer(scatterConfig));
      memoryFrameLines_[i].rootAgent->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].rootAgent;
    } else {
      LayerConfig biasConfig = *agentConfig;
      if (memoryConfig.has_boot_bias_parameter_name()) {
        biasConfig.set_bias_parameter_name(
            memoryConfig.boot_bias_parameter_name());
        biasConfig.set_active_type(memoryConfig.boot_bias_active_type());
      } else if (memoryConfig.has_boot_with_const_id()) {
        biasConfig.set_bos_id(memoryConfig.boot_with_const_id());
      }
      memoryFrameLines_[i].biasLayer.reset(new BootBiasLayer(biasConfig));
      memoryFrameLines_[i].biasLayer->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].biasLayer;
    }

    if (subModelConfig->has_generator()) {
      memoryFrameLines_[i].scatterAgents.resize(2);
      for (auto& agent : memoryFrameLines_[i].scatterAgents) {
        agent.reset(memoryConfig.is_sequence()
                        ? new SequenceScatterAgentLayer(*agentConfig)
                        : new ScatterAgentLayer(*agentConfig));
        agent->init(LayerMap(), parameterMap_);
      }
    }
  }

  if (subModelConfig->has_generator()) {
    generator_.config = subModelConfig->generator();
    eosFrameLine_.reset(new EosFrameLine);
    maxSequenceLength_ = generator_.config.max_num_frames();
  }

  // get parameters actually used by this Layer Group
  resizeOrCreateFrames(1);
  for (auto& para : frames_[0]->getParameters()) {
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }
  for (auto& para : parameters_) {  // bias layer parameters
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }

  if (subModelConfig->evaluator_names_size() > 0) {
    evaluator_.reset(frames_[0]->makeEvaluator());
  }
}

void RecurrentGradientMachine::resizeOrCreateFrames(int numFrames) {
  if ((size_t)numFrames <= frames_.size()) {
    return;
  }

  frames_.reserve(numFrames);
  for (auto& inFrameLine : inFrameLines_) {
    inFrameLine.agents.reserve(numFrames);
  }
  for (auto& outFrameLine : outFrameLines_) {
    outFrameLine.frames.reserve(numFrames);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.frames.reserve(numFrames);
    memoryFrameLine.agents.reserve(numFrames);
  }
  if (eosFrameLine_) {
    eosFrameLine_->layers.reserve(numFrames);
  }

  ParamInitCallback subParamInitCb = [this](int paramId, Parameter* para) {
    para->enableSharedType(PARAMETER_VALUE,
                           this->parameters_[paramId]->getBuf(PARAMETER_VALUE),
                           this->parameters_[paramId]->getMat(PARAMETER_VALUE));
    para->enableSharedType(
        PARAMETER_GRADIENT,
        this->parameters_[paramId]->getBuf(PARAMETER_GRADIENT),
        this->parameters_[paramId]->getMat(PARAMETER_GRADIENT));
  };

  for (int i = frames_.size(); i < numFrames; ++i) {
    std::unique_ptr<NeuralNetwork> frame(
          NeuralNetwork::newNeuralNetwork(subModelName_));
    frame->init(config_, subParamInitCb);

    for (auto& inFrameLine : inFrameLines_) {
      inFrameLine.agents.push_back(frame->getLayer(inFrameLine.linkName));
    }

    for (auto& outFrameLine : outFrameLines_) {
      outFrameLine.frames.push_back(frame->getLayer(outFrameLine.layerName));
    }
    for (auto& memoryFrameLine : memoryFrameLines_) {
      memoryFrameLine.frames.push_back(
          frame->getLayer(memoryFrameLine.layerName));
      memoryFrameLine.agents.push_back(
          frame->getLayer(memoryFrameLine.linkName));
    }
    if (eosFrameLine_) {
      eosFrameLine_->layers.push_back(
          frame->getLayer(generator_.config.eos_layer_name()));
    }

    frames_.emplace_back(std::move(frame));
  }
}

void RecurrentGradientMachine::resizeBootFrame(int numSequences) {
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.biasLayer) {
      auto biasLayer =
          dynamic_cast<BootBiasLayer*>(memoryFrameLine.biasLayer.get());
      CHECK_NOTNULL(biasLayer);
      biasLayer->resetHeight(numSequences);
    } else {  // check input root layer height
      CHECK_EQ(numSequences,
               memoryFrameLine.rootLayer->getOutput().getNumSequences());
    }
  }
}

void RecurrentGradientMachine::prefetch(const std::vector<Argument>& inArgs) {
  LOG(FATAL) << "should not use this function";
}

void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
                                       std::vector<Argument>* outArgs,
                                       PassType passType) {
  if (inFrameLines_.empty() && passType == PASS_TEST) {
    generateSequence();
    return;
  }  // else forward..

  const Argument& input = inFrameLines_[0].inLayer->getOutput();
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  const int* starts = input.sequenceStartPositions->getData(false);
  bool hasSubseq = input.hasSubseq();
  // check hasSubseq in both config and input are the same
  CHECK_EQ(hasSubseq, inFrameLines_[0].hasSubseq);

  CHECK_EQ(starts[numSequences], batchSize);
  CHECK(input.sequenceStartPositions);

  // check other inputs has same sequence length and start
  for (size_t i = 1; i < inFrameLines_.size(); ++i) {
    const Argument& input1 = inFrameLines_[i].inLayer->getOutput();
    CHECK_EQ((size_t)input1.getNumSequences(), numSequences);
    // check all inputs should have same hasSubseq flag
    CHECK_EQ(input.hasSubseq(), inFrameLines_[0].hasSubseq);
    CHECK_EQ(input1.getBatchSize(), batchSize);
    CHECK(std::equal(starts, starts + numSequences + 1,
                     input1.sequenceStartPositions->getData(false)));
  }

  if (hasSubseq) {
    CHECK(input.subSequenceStartPositions);
    size_t numSubSequences = input.getNumSubSequences();
    const int* subStarts = input.subSequenceStartPositions->getData(false);
    CHECK_EQ(subStarts[numSubSequences], batchSize);
    // if hasSubseq, check other inputs has same sub-sequence and sub-start
    for (size_t i = 1; i < inFrameLines_.size(); ++i) {
      const Argument& input1 = inFrameLines_[i].inLayer->getOutput();
      CHECK_EQ((size_t)input1.getNumSubSequences(), numSubSequences);
      CHECK(std::equal(subStarts, subStarts + numSubSequences + 1,
                       input1.subSequenceStartPositions->getData(false)));
    }
  }

  seqLengthAndStart_.clear();
  input.getSeqLengthAndStart(&seqLengthAndStart_, &maxSequenceLength_);
  resizeOrCreateFrames(maxSequenceLength_);
  resizeBootFrame(numSequences);

  AsyncGpuBlock asyncGpuBlock;
  createInFrameInfo(input, passType);

  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
      createMemoryFrameInfo(&memoryFrameLine, passType);
      scatterAgent->setRealLayerAndOutput(
          memoryFrameLine.rootLayer, memoryFrameLine.outArg,
          memoryFrameLine.allIds,
          /* idIndex */ 0, memoryFrameLine.allIds->getSize());
      if (memoryFrameLine.is_sequence) {  // memoryConfig is sequence
        int size = memoryFrameLine.sequenceStartPositions->getSize();
        scatterAgent->setSequenceStartPositions(
            memoryFrameLine.sequenceStartPositions,
            /* seqStartPosIndex */ 0, size);
      }
    }
  }

  for (auto& outFrameLine : outFrameLines_) {
    auto gatherAgent =
        dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
    CHECK_NOTNULL(gatherAgent);
    gatherAgent->copyIdAndSequenceInfo(input, info_.allIds, info_.idIndex);
  }

  for (int i = 0; i < maxSequenceLength_; ++i) {
    int idSize = info_.idIndex[i + 1] - info_.idIndex[i];

    // connect in_links
    for (auto& inFrameLine : inFrameLines_) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(inFrameLine.agents[i].get());
      scatterAgent->setRealLayerAndOutput(inFrameLine.inLayer,
                                          inFrameLine.outArg, info_.allIds,
                                          info_.idIndex[i], idSize);
      if (hasSubseq) {
        int size = info_.seqStartPosIndex[i + 1] - info_.seqStartPosIndex[i];
        scatterAgent->setSequenceStartPositions(
            info_.sequenceStartPositions, info_.seqStartPosIndex[i], size);
      }
    }

    // connect out_links
    for (auto& outFrameLine : outFrameLines_) {
      auto gatherAgent =
          dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
      gatherAgent->addRealLayer(outFrameLine.frames[i]);
    }

    // connect memory links
    for (auto& memoryFrameLine : memoryFrameLines_) {
      NeuralNetwork::connect(
          memoryFrameLine.agents[i],
          i == 0 ? memoryFrameLine.bootLayer : memoryFrameLine.frames[i - 1],
          idSize /*height of agent*/);
    }
  }

  REGISTER_TIMER_INFO("RecurrentFwTime", "RecurrentFwTime");
  // forward
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(passType);
  }
  for (int i = 0; i < maxSequenceLength_; ++i) {
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[i]->forward(inArgs, &outArgs, passType);
  }
  if (evaluator_ && passType == PASS_TEST) {
    this->eval(evaluator_.get());
  }
}

void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTime", "RecurrentBwTime");
  AsyncGpuBlock asyncGpuBlock;
  for (int i = maxSequenceLength_ - 1; i >= 0; --i) {
    frames_[i]->backward(nullptr);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->backward(nullptr);
  }

  // call printers here so the gradient can be printed
  if (evaluator_) {
    this->eval(evaluator_.get());
  }
}

void RecurrentGradientMachine::forwardBackward(
    const std::vector<Argument>& inArgs, std::vector<Argument>* outArgs,
    PassType passType, const UpdateCallback& callback) {
  LOG(FATAL) << "should not use this function";
}

void RecurrentGradientMachine::eval(Evaluator* evaluator) {
  // call printers frame by frame
  for (int i = 0; i < maxSequenceLength_; ++i) {
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin";
    evaluator->eval(*(frames_[i].get()));
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " end";
  }
}

void RecurrentGradientMachine::registerBeamSearchControlCallbacks(
    const BeamSearchCandidatesAdjustCallback& adjustBeamSearch,
    const NormOrDropNodeCallback& normOrDropNode,
    const DropCallback& stopBeamSearch) {
  this->removeBeamSearchControlCallbacks();
  //! for gcc 46, aggregate initialization is not supported. TAT
  this->beamSearchCtrlCallbacks_ = new BeamSearchControlCallbacks(
      adjustBeamSearch, normOrDropNode, stopBeamSearch);
}

void RecurrentGradientMachine::removeBeamSearchControlCallbacks() {
  if (this->beamSearchCtrlCallbacks_) {
    delete this->beamSearchCtrlCallbacks_;
    this->beamSearchCtrlCallbacks_ = nullptr;
  }
}

void RecurrentGradientMachine::registerBeamSearchStatisticsCallbacks(
    const EachStepCallback& onEachStepStarted,
    const EachStepCallback& onEachStepStoped) {
  this->removeBeamSearchStatisticsCallbacks();
  this->beamSearchStatistics_ =
      new BeamSearchStatisticsCallbacks(onEachStepStarted, onEachStepStoped);
}

void RecurrentGradientMachine::removeBeamSearchStatisticsCallbacks() {
  if (this->beamSearchStatistics_) {
    delete this->beamSearchStatistics_;
    this->beamSearchStatistics_ = nullptr;
  }
}
/* create scattered id infomation for all realLayer of inFrameLines one time.
 * If hasSubseq, will also create scattered sequenceStartPositions infomation
 * for all realLayer of inFrameLines one time.
*/
void RecurrentGradientMachine::createInFrameInfo(const Argument& input,
                                                 PassType passType) {
  bool hasSubseq = input.hasSubseq();
  size_t numSequences = input.getNumSequences();
  std::vector<int> allIds;
  info_.idIndex.clear();
  info_.idIndex.push_back(0);  // first idIndex = 0
  if (hasSubseq) {             // for sequenceScatterAgentLayer
    size_t numSubSequences = input.getNumSubSequences();
    std::vector<int> sequenceStartPositions;
    info_.seqStartPosIndex.clear();
    info_.seqStartPosIndex.push_back(0);  // first seqStartPosIndex = 0
    for (int i = 0; i < maxSequenceLength_; ++i) {
      sequenceStartPositions.push_back(0);  // first element = 0
      for (size_t j = 0; j < numSubSequences; ++j) {
        if (std::get<3>(seqLengthAndStart_[j]) == i) {
          int subSeqStart = std::get<1>(seqLengthAndStart_[j]);
          int subSeqLength = std::get<0>(seqLengthAndStart_[j]);
          for (int k = subSeqStart; k < subSeqStart + subSeqLength; ++k) {
            allIds.push_back(k);
          }
          sequenceStartPositions.push_back(sequenceStartPositions.back() +
                                              subSeqLength);
        }
      }
      info_.idIndex.push_back(allIds.size());
      info_.seqStartPosIndex.push_back(sequenceStartPositions.size());
    }
    // inFrameLine create sequenceStartPositions one time
    CHECK_EQ(sequenceStartPositions.size(),
             maxSequenceLength_ + numSubSequences);
    CHECK_EQ(info_.seqStartPosIndex.size(),
             static_cast<size_t>(maxSequenceLength_ + 1));
    createSeqPos(sequenceStartPositions, &info_.sequenceStartPositions);
  } else {  // for scatterAgentLayer
    for (int i = 0; i < maxSequenceLength_; ++i) {
      for (size_t j = 0; j < numSequences; ++j) {
        int seqLength = std::get<0>(seqLengthAndStart_[j]);
        if (i >= seqLength) {
          break;
        }
        int seqStart = std::get<1>(seqLengthAndStart_[j]);
        allIds.push_back(reversed_ ? (seqStart + seqLength - 1 - i)
                                   : (seqStart + i));
      }
      info_.idIndex.push_back(allIds.size());
    }
  }
  // copy and check scatterId
  copyScattedId(allIds, &info_.allIds, input.getBatchSize());
  CHECK_EQ(info_.idIndex.size(), static_cast<size_t>(maxSequenceLength_ + 1));
  // inFrameLine select rows in real layer one time
  for (auto& inFrameLine : inFrameLines_) {
    selectRowsOneTime(inFrameLine.inLayer, info_.allIds, &inFrameLine.outArg,
                      passType);
  }
}

/* like createInFrameInfo, but for all realLayer of memoryFrameLines*/
void RecurrentGradientMachine::createMemoryFrameInfo(
    MemoryFrameLine* memoryFrameLine, PassType passType) {
  const Argument& input = (*memoryFrameLine).rootLayer->getOutput();
  size_t numSequences = input.getNumSequences();
  std::vector<int> allIds;
  bool seqFlag = (*memoryFrameLine).is_sequence;

  if (seqFlag) {  // for sequenceScatterAgentLayer
    CHECK(input.sequenceStartPositions)
        << "boot layer must be a sequence when is_sequence = true";
    std::vector<int> sequenceStartPositions;
    sequenceStartPositions.push_back(0);  // first element = 0
    const int* starts = input.sequenceStartPositions->getData(false);
    for (size_t i = 0; i < numSequences; ++i) {
      int seqId = std::get<2>(seqLengthAndStart_[i]);
      for (int k = starts[seqId]; k < starts[seqId + 1]; ++k) {
        allIds.push_back(k);
      }
      sequenceStartPositions.push_back(sequenceStartPositions.back() +
                                          starts[seqId + 1] - starts[seqId]);
    }
    createSeqPos(sequenceStartPositions,
                 &(*memoryFrameLine).sequenceStartPositions);

  } else {  // for scatterAgentLayer
    for (size_t i = 0; i < numSequences; ++i) {
      allIds.push_back(std::get<2>(seqLengthAndStart_[i]));
    }
  }
  // copy and check scatterId
  copyScattedId(allIds, &(*memoryFrameLine).allIds, input.getBatchSize());
  // memoryFrameLine select rows in real layer one time
  selectRowsOneTime((*memoryFrameLine).rootLayer, (*memoryFrameLine).allIds,
                    &(*memoryFrameLine).outArg, passType);
}

void RecurrentGradientMachine::copyScattedId(std::vector<int>& srcIds,
                                             IVectorPtr* dstIds, int size) {
  int idSize = srcIds.size();
  CHECK_EQ(idSize, size);
  IVector::resizeOrCreate(*dstIds, idSize, useGpu_);
  (*dstIds)->copyFrom(srcIds.data(), idSize);
  // check
  std::sort(srcIds.begin(), srcIds.end());
  for (int i = 0; i < idSize; ++i) {
    CHECK_EQ(srcIds[i], i);
  }
}

void RecurrentGradientMachine::selectRowsOneTime(LayerPtr layer,
                                                 const IVectorPtr& allIds,
                                                 Argument* arg,
                                                 PassType passType) {
  const MatrixPtr& realV = layer->getOutputValue();
  int height = realV->getHeight();
  int width = realV->getWidth();
  Matrix::resizeOrCreate(arg->value, height, width, /* trans */ false, useGpu_);
  arg->value->zeroMem();
  arg->value->selectRows(*realV, *allIds);
  if (passType != PASS_TEST) {
    Matrix::resizeOrCreate(arg->grad, height, width, /* trans */ false,
                           useGpu_);
    arg->grad->zeroMem();
  }
}

void RecurrentGradientMachine::createSeqPos(
    const std::vector<int>& sequenceStartPosition,
    ICpuGpuVectorPtr* sequenceStartPositions) {
  int size = sequenceStartPosition.size();
  const int* data = sequenceStartPosition.data();
  ICpuGpuVector::resizeOrCreate(*sequenceStartPositions, size, false);
  (*sequenceStartPositions)->copyFrom(data, size, false);
}

size_t RecurrentGradientMachine::getGenBatchSize() {
  size_t numSequences = 0;
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (!memoryFrameLine.rootLayer) continue;
    Argument& bootArg = memoryFrameLine.rootLayer->getOutput();
    size_t batchSize = memoryFrameLine.is_sequence ?
                       bootArg.getNumSequences() : bootArg.getBatchSize();
    if (numSequences) {
      CHECK_EQ(numSequences, batchSize);
    } else {
      numSequences = batchSize;
    }
  }
  CHECK(numSequences) << "Fail to get batch size in generation. "
    "At least one of the Memory layer MUST have a layer that is NOT in "
    "the layer group to boot it, and this boot layer is used to "
    "decide batch_size in generation process.";
  return numSequences;
}

void RecurrentGradientMachine::generateSequence() {
  CHECK_NOTNULL(eosFrameLine_.get());
  CHECK_GE(outFrameLines_.size(), 1UL);
  size_t numSequences = getGenBatchSize();

  resizeBootFrame(numSequences);
  // We create only two sub-network in generation for alternate use.
  // Thus, we can reduce total memory of output_ in layer forward.
  resizeOrCreateFrames(2);

  // outFrameLines_.size() > 1UL
  dataArgsSize_ = outFrameLines_.size() - 1;
  dataArgs_.resize(dataArgsSize_);
  dataArgsFrame_.clear();
  dataArgsFrame_.resize(dataArgsSize_);

  // connect boot frame memory links
  std::vector<int> ids(numSequences);
  for (size_t i = 0; i < numSequences; ++i) { ids[i] = i; }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
      bool seqFlag = memoryFrameLine.is_sequence;
      scatterAgent->setRealLayer(memoryFrameLine.rootLayer, ids, seqFlag);
      if (seqFlag) {
        CHECK(memoryFrameLine.rootLayer->getOutput().sequenceStartPositions)
            << "boot layer must be a sequence when is_sequence = true";
      }
    }
    NeuralNetwork::connect(memoryFrameLine.agents[0], memoryFrameLine.bootLayer,
                           ids.size());
  }

  // boot layer forward
  AsyncGpuBlock asyncGpuBlock;
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(PASS_TEST);
  }

  // init outArg
  size_t resultNum = generator_.config.num_results_per_sample();
  IVector::resizeOrCreate(generator_.outArg.ids,
      generator_.config.max_num_frames() * numSequences * resultNum, false);
  if (resultNum > 1) {
    CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size()));
    Matrix::resizeOrCreate(generator_.outArg.in, /* height */ numSequences,
                           /* width */ resultNum, false, /* useGpu */ false);
  }
  ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
                                numSequences + 1, /* useGpu */ false);
  if (getBeamSize() > 1) {
    beamSearch(numSequences);
  } else {
    oneWaySearch(numSequences);
  }
  if (dataArgsSize_) createDataOutlink(batchMachineIdVec_);

  size_t size = generator_.ids.size();
  generator_.outArg.ids->resize(size);
  generator_.outArg.ids->copyFrom(generator_.ids.data(), size);

  OutFrameLine& outFrameLine = outFrameLines_[0];
  auto dataAgent = dynamic_cast<DataLayer*>(outFrameLine.agentLayer.get());
  CHECK_NOTNULL(dataAgent);
  dataAgent->setData(generator_.outArg);
  dataAgent->prefetch();
}

void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
  OutFrameLine& outFrameLine = outFrameLines_[0];

  // finalPaths_[0] stores the generated results of the
  // entire batch, so its size exactly equals to batchSize.
  finalPaths_.clear();
  finalPaths_.resize(1);
  std::vector<Path>& finalPaths = finalPaths_[0];
  finalPaths.resize(batchSize);

  seqIds_.resize(batchSize);
  std::vector<int> scatterIds;
  for (size_t i = 0; i < batchSize; ++i) {
    finalPaths[i].seqId = i;
    seqIds_[i] = i;
  }

  // forward
  for (int i = 0; i < maxSequenceLength_; ++i) {
    if (i && scatterIds.empty()) break;
    int machineCur = i % 2;
    int machinePrev = (i - 1) % 2;
    // connect memory links
    if (i) {
      seqIds_.clear();
      for (size_t j = 0; j < batchSize; ++j) {
        if (finalPaths[j].seqId != -1) seqIds_.push_back(j);
      }

      for (auto& memoryFrameLine : memoryFrameLines_) {
        auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
            memoryFrameLine.scatterAgents[machineCur].get());
        scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
                                   scatterIds, memoryFrameLine.is_sequence);
        scatterAgent->forward(PASS_TEST);
        NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                               memoryFrameLine.scatterAgents[machineCur]);
      }
    }
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

    const IVectorPtr& idVec = outFrameLine.frames[machineCur]->getOutput().ids;
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      finalPaths[seqIds_[j]].ids.push_back(idVec->getElement(j));
      finalPaths[seqIds_[j]].machineIdVec.push_back(j);
    }

    copyDataOutlinkFrame(machineCur);

    // call value printer
    if (evaluator_) {
      evaluator_->eval(*(frames_[machineCur].get()));
    }
    // check eos
    const IVectorPtr& eosVec =
        eosFrameLine_->layers[machineCur]->getOutput().ids;
    scatterIds.clear();
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      if (eosVec->getElement(j) == 1U) {
        // path.seqId = -1 indicates end of generation
        // of an input sequence
        finalPaths[seqIds_[j]].seqId = -1;
      } else { scatterIds.push_back(j); }
    }
  }

  batchMachineIdVec_.clear();
  int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
  starts[0] = 0;
  generator_.ids.clear();
  for (size_t i = 0; i < batchSize; ++i) {
    generator_.ids.insert(generator_.ids.end(),
                          finalPaths[i].ids.begin(),
                          finalPaths[i].ids.end());
    starts[i + 1] = generator_.ids.size();
    batchMachineIdVec_.insert(batchMachineIdVec_.end(),
                             finalPaths[i].machineIdVec.begin(),
                             finalPaths[i].machineIdVec.end());
  }
}

void RecurrentGradientMachine::connectPrevFrame(int stepId,
                                                std::vector<Path>& paths) {
  int machineCur = stepId % 2;
  int machinePrev = (stepId - 1) % 2;
  int beam = getBeamSize();
  machineIds_.clear();
  topIds_.clear();
  seqIds_.clear();

  for (size_t j = 0; j < paths.size(); ++j) {
    machineIds_.push_back(paths[j].machineId);
    topIds_.push_back(paths[j].machineId * beam + paths[j].topIndex);
    seqIds_.push_back(paths[j].seqId);
  }

  for (auto& memoryFrameLine : memoryFrameLines_) {
    bool isOutIds = (memoryFrameLine.layerName == outFrameLines_[0].layerName);
    auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
        memoryFrameLine.scatterAgents[machineCur].get());
    scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
                               isOutIds ? topIds_ : machineIds_,
                               memoryFrameLine.is_sequence);
    scatterAgent->forward(PASS_TEST);
    NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                           memoryFrameLine.scatterAgents[machineCur]);
  }
}

void RecurrentGradientMachine::forwardFrame(int machineCur) {
  // forward
  const std::vector<Argument> inArgs;
  std::vector<Argument> outArgs;
  frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

  copyDataOutlinkFrame(machineCur);

  IVectorPtr& ids = outFrameLines_[0].frames[machineCur]->getOutput().ids;
  MatrixPtr in = outFrameLines_[0].frames[machineCur]->getOutput().in;
  IVectorPtr& eos = eosFrameLine_->layers[machineCur]->getOutput().ids;
  if (useGpu_) {
    IVector::resizeOrCreate(cpuId_, ids->getSize(), false /* useGpu */);
    cpuId_->copyFrom(*ids);
    Matrix::resizeOrCreate(cpuProb_, in->getHeight(), in->getWidth(),
                           false /* trans */, false /* useGpu */);
    cpuProb_->copyFrom(*in);
    IVector::resizeOrCreate(cpuEos_, eos->getSize(), false /* useGpu */);
    cpuEos_->copyFrom(*eos);
  } else {
    cpuId_ = ids;
    cpuProb_ = in;
    cpuEos_ = eos;
  }
}

void RecurrentGradientMachine::singlePathExpand(
    Path& curPath, size_t curPathId, std::vector<Path>& newPaths,
    size_t expandWidth) {
  int calc_id =
      gDiyProbStart ? gDiyProbStart(curPath.ids.size(), curPath.ids.data()) : 0;

  const int* idVec = cpuId_->getData();
  const real* probMat = cpuProb_->getData();
  const int* eosVec = cpuEos_->getData();

  for (size_t k = 0; k < expandWidth; k++) {
    int index = curPathId * expandWidth + k;
    int id = idVec[index];
    real prob = probMat[index];
    /*
     * Ordinarily, beam search greedily expands the most promising expandWidth
     * paths that currently are ALWAYS returned by MaxIdLayer.
     * In one condition, if user customizes the beam search procedure by
     * restricting the expansion within a user defined subset,
     * as a result, MaxIdLayer possibly COULD NOT return expandWidth
     * vaild expansions, and it will use -1 to indicate the end of valid
     * expansion candidates.
     */
    if (id == -1) break;

    real newLogProb = generator_.config.log_prob() ? std::log(prob) : prob;
    Path newPath(curPath, id, newLogProb,
                 curPathId /*machineId*/, k /*topIndex*/);
    if (this->beamSearchCtrlCallbacks_) {
      if (beamSearchCtrlCallbacks_->stopDetermineCandidates(
              newPath.seqId, newPath.ids, newPath.probHistory)) return;
    }
    // outFrameLines_.size() > 1UL
    if (dataArgsSize_) {
      newPath.machineIdVec = curPath.machineIdVec;
      newPath.machineIdVec.push_back(curPathId);
    }
    bool atEos = eosVec[index] == 1U ||
                 newPath.ids.size() >= (size_t)maxSequenceLength_;
    // adjustNewPath
    newPath.adjustProb(calc_id, atEos);
    if (this->beamSearchCtrlCallbacks_) {
      this->beamSearchCtrlCallbacks_->normOrDropNode(
          newPath.seqId, newPath.ids, newPath.probHistory, &newPath.logProb);
    }
    if (!newPath.isDropable()) {
      atEos ? finalPaths_[curPath.seqId].push_back(newPath) :
              newPaths.push_back(newPath);
    }
  }  // for expandWidth

  if (gDiyProbStop) { gDiyProbStop(calc_id); }
}

void RecurrentGradientMachine::beamExpand(
    std::vector<Path>& paths, std::vector<Path>& newPaths) {
  size_t candidatePathCount = paths.size();
  // idVec.size() could be larger than candidatePathCount * beam,
  // so user can drop some node customly.
  CHECK_EQ(cpuId_->getSize() % candidatePathCount, 0UL);
  size_t expandWidth = cpuId_->getSize() / candidatePathCount;

  // iterate over each sequence
  size_t totalExpandCount = 0;
  int prevSeqId = -1;
  int curSeqId = 0;
  for (size_t j = 0; j <= candidatePathCount; j++) {
    // expansions of a single sequence are all processed
    curSeqId = (j < candidatePathCount? paths[j].seqId : curSeqId + 1);
    if (prevSeqId != -1 && curSeqId != prevSeqId) {
      totalExpandCount += beamShrink(newPaths, prevSeqId, totalExpandCount);
    }
    if (j == candidatePathCount) return;
    singlePathExpand(paths[j], j, newPaths, expandWidth);

    prevSeqId = paths[j].seqId;
  }  // for paths
}

// Drop extra nodes to beam size.
size_t RecurrentGradientMachine::beamShrink(
    std::vector<Path>& newPaths, size_t seqId, size_t totalExpandCount) {
  size_t minNewPathSize = std::min(getBeamSize(),
                                   newPaths.size() - totalExpandCount);
  if (!minNewPathSize) { return 0; }
  std::nth_element(newPaths.begin() + totalExpandCount,
                   newPaths.begin() + totalExpandCount + minNewPathSize,
                   newPaths.end(), Path::greaterPath);
  newPaths.resize(totalExpandCount + minNewPathSize);

  real minPathLogProb = std::min_element(newPaths.end() - minNewPathSize,
                                         newPaths.end())->logProb;
  real maxPathLogProb = std::max_element(newPaths.end() - minNewPathSize,
                                         newPaths.end())->logProb;

  // Remove the already formed paths that are relatively short
  finalPaths_[seqId].erase(
      std::remove_if(finalPaths_[seqId].begin(),
                     finalPaths_[seqId].end(),
                     [&](Path& p) {
                         return p.logProb < minPathLogProb;
                     }),
      finalPaths_[seqId].end());
  for (auto p : finalPaths_[seqId]) {
    if (minFinalPathLogProb_[seqId] > p.logProb) {
      minFinalPathLogProb_[seqId] = p.logProb;
    }
  }

  if (finalPaths_[seqId].size() >= getBeamSize() &&
          minFinalPathLogProb_[seqId] >= maxPathLogProb) {
    newPaths.resize(totalExpandCount);
    return 0;
  }
  return minNewPathSize;
}

void RecurrentGradientMachine::fillGenOutputs() {
  size_t numResults = generator_.config.num_results_per_sample();
  for (size_t i = 0; i < finalPaths_.size(); ++i) {
    size_t minFinalPathsSize = std::min(numResults, finalPaths_[i].size());
    std::partial_sort(finalPaths_[i].begin(),
                      finalPaths_[i].begin() + minFinalPathsSize,
                      finalPaths_[i].end(), Path::greaterPath);
    finalPaths_[i].resize(minFinalPathsSize);
  }

  batchMachineIdVec_.clear();
  generator_.ids.clear();
  if (numResults > 1) {
    real* probs = generator_.outArg.in->getData();
    int* starts =
        generator_.outArg.sequenceStartPositions->getMutableData(false);
    starts[0] = 0;
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
        Path& path = finalPaths_[i][j];
        generator_.ids.push_back(path.ids.size());  // sequence size
        generator_.ids.insert(generator_.ids.end(), path.ids.begin(),
                              path.ids.end());
        generator_.ids.push_back(-1);  // end of sequence
        probs[i * numResults + j] = path.logProb;

        if (!j && dataArgsSize_) {
          // in beam search, here only reserved the top 1 generated result
          // for out_links that are not the generated word indices.
          batchMachineIdVec_.insert(batchMachineIdVec_.end(),
              path.machineIdVec.begin(), path.machineIdVec.end());
        }
      }
      starts[i + 1] = generator_.ids.size();
    }
  } else {
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      CHECK(!finalPaths_[i].empty());
      generator_.ids = finalPaths_[i][0].ids;
    }
  }
}

void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
  for (size_t i = 0; i < dataArgsSize_; i++) {
    Argument outFrame;
    outFrame.resizeAndCopyFrom(
        outFrameLines_[i + 1].frames[machineCur]->getOutput(), useGpu_);
    dataArgsFrame_[i].emplace_back(outFrame);
  }
}

void RecurrentGradientMachine::createDataOutlink(
    std::vector<int>& machineIdVec) {
  size_t seqNum = getBeamSize() > 1UL ?
                  finalPaths_.size() : finalPaths_[0].size();
  std::vector<int> starts(seqNum + 1, 0);
  for (size_t i = 0; i < seqNum; ++i) {
    size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() :
                                          finalPaths_[0][i].ids.size();
    starts[i + 1] = starts[i] + seqLen;
  }

  for (size_t i = 0; i < dataArgsSize_; i++) {
    dataArgs_[i].concat(dataArgsFrame_[i], machineIdVec,
                        starts, useGpu_, HPPL_STREAM_1, PASS_TEST);

    auto dataAgent = dynamic_cast<DataLayer*>(
        outFrameLines_[i + 1].agentLayer.get());
    CHECK_NOTNULL(dataAgent);
    dataAgent->setData(dataArgs_[i]);
  }
}

void RecurrentGradientMachine::beamSearch(size_t batchSize) {
  finalPaths_.clear();
  finalPaths_.resize(batchSize);
  seqIds_.resize(batchSize);
  minFinalPathLogProb_.clear();
  minFinalPathLogProb_.resize(batchSize, 0);

  std::vector<Path> paths;
  std::vector<Path> newPaths;
  for (size_t i = 0; i < batchSize; ++i) {
    paths.push_back(Path(i));
    if (this->beamSearchCtrlCallbacks_) {
      paths.back().recordHistory();
    }
  }

  // restart beam search
  stopBeamSearch_ = false;
  for (int i = 0; i < maxSequenceLength_; ++i) {
    int machineCur = i % 2;
    std::unique_ptr<
        ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&, int>>
        statisticsBlock;
    if (this->beamSearchStatistics_) {
      auto ptr =
          new ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&,
                              int>(beamSearchStatistics_->onEachStepStarted,
                                   beamSearchStatistics_->onEachStepStoped, i);
      statisticsBlock.reset(ptr);
    }
    if (stopBeamSearch_) break;

    if (i) connectPrevFrame(i, paths);

    if (this->beamSearchCtrlCallbacks_) {
      std::vector<std::vector<int>*> prefixes;
      prefixes.resize(paths.size());
      std::transform(
          paths.begin(), paths.end(), prefixes.begin(),
          [](const Path& p) { return const_cast<std::vector<int>*>(&p.ids); });
      beamSearchCtrlCallbacks_->beamSearchCandidateAdjust(
          prefixes, frames_[machineCur].get(), i);
    }

    forwardFrame(machineCur);
    beamExpand(paths, newPaths);
    if (newPaths.empty()) break;

    paths = newPaths;
    newPaths.clear();
  }  // end for machineCur
  fillGenOutputs();
}

void RecurrentGradientMachine::Path::adjustProb(int calc_id, bool atEos) {
  if (gDiyProbMethod) {
    logProb = gDiyProbMethod(calc_id, ids.size(), ids.data(), logProb, atEos);
  }
}

}  // namespace paddle