gru_op.h 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#pragma once
16 17 18
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
19 20 21 22
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
G
guosheng 已提交
23 24 25 26

namespace paddle {
namespace operators {

G
guosheng 已提交
27 28 29
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
30 31
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
32 33
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
G
guosheng 已提交
34
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
35
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
36
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
37
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
G
guosheng 已提交
38 39
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
G
guosheng 已提交
41 42 43
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
Q
Qiao Longfei 已提交
44
    bool origin_mode = context.Attr<bool>("origin_mode");
G
guosheng 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
66
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
67 68 69 70 71
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
72 73
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
74 75 76
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
77

G
guosheng 已提交
78
    Tensor ordered_h0, ordered_h0_grad;
D
dzhwinter 已提交
79 80 81

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
82
    if (h0) {
Q
QI JUN 已提交
83 84
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
85 86 87
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
88 89
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
90 91
    }

G
guosheng 已提交
92 93
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
94
    to_batch(dev_ctx, *hidden_grad, &batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
95

96
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
97 98
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
99 100
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

101
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
102
    if (weight_grad) {
G
guosheng 已提交
103
      gru_grad.gate_weight_grad =
G
guosheng 已提交
104
          weight_grad->mutable_data<T>(context.GetPlace());
105
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
106
      gru_grad.state_weight_grad =
G
guosheng 已提交
107 108
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
109 110
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
111 112 113 114
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
115 116 117 118
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
119 120 121 122 123 124
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
125
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
126
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
127
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
128 129

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
130
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
131
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
132
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
133 134
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
135
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
136
      if (n == 0) {
G
guosheng 已提交
137 138
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
139
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
140 141 142
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
143
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
144
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
145
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
146 147
      }

Q
QI JUN 已提交
148
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
149
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
Q
Qiao Longfei 已提交
150
          active_gate, origin_mode);
G
guosheng 已提交
151 152 153
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
154
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
155
      batch_gate_grad.set_lod(batch_gate->lod());
156
      to_seq(dev_ctx, batch_gate_grad, input_grad);
G
guosheng 已提交
157 158 159
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
160
      math::ColwiseSum<DeviceContext, T> col_sum;
161
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
162
    }
G
guosheng 已提交
163
    if (h0 && h0_grad) {
Q
QI JUN 已提交
164 165
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
166
    }
G
guosheng 已提交
167 168 169 170 171 172 173 174 175
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle