gru_op.cc 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
16
#include <string>
T
tensor-tang 已提交
17 18 19 20 21
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"

DECLARE_int32(paddle_num_threads);
G
guosheng 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(%s) of GRUOp should not be null.", "BatchGate");
    PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"),
                   "Output(%s) of GRUOp should not be null.",
                   "BatchResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
                   "Output(%s) of GRUOp should not be null.", "BatchHidden");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(%s) of GRUOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                      "The input_size must be 3 times of frame_size in GRUOp.");
    PADDLE_ENFORCE_EQ(
        weight_dims[1], frame_size * 3,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
55
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
56 57 58 59
      auto h0_dims = ctx->GetInputDim("H0");
      PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                        "The width of H0 must be equal to frame_size.");
    }
60
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
    }
    ctx->SetOutputDim("BatchGate", input_dims);
    ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
    ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
79
  void Make() override {
G
guosheng 已提交
80
    AddInput("Input",
81
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
82 83 84 85
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
86
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
87
             "input. This is a tensor with shape (N x D), where N is the "
88 89
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
90 91
    AddInput(
        "Weight",
92 93 94 95 96
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
97
    AddInput("Bias",
98 99 100
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
101
    AddOutput("BatchGate",
102 103 104 105 106 107 108
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
G
guosheng 已提交
109 110 111
        .AsIntermediate();
    AddOutput(
        "BatchResetHiddenPrev",
112 113 114
        "(LoDTensor) The reseted hidden state LoDTensor organized in batches. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
115 116 117
        .AsIntermediate();
    AddOutput(
        "BatchHidden",
118 119 120
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
121
        .AsIntermediate();
122 123 124 125 126
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed GRU.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
140 141 142 143
    AddAttr<bool>("origin_mode",
                  "bool"
                  "use origin mode in article https://arxiv.org/abs/1412.3555")
        .SetDefault(false);
G
guosheng 已提交
144
    AddComment(R"DOC(
145 146
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
147 148 149 150
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
151
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
152
$$
153

K
kavyasrinet 已提交
154
@note To implement the complete GRU, fully-connected operator must be used
155
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUGradOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUGradOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(%s) of GRUGradOp should not be null.", "BatchGate");
    PADDLE_ENFORCE(ctx->HasInput("BatchResetHiddenPrev"),
                   "Input(%s) of GRUGradOp should not be null.",
                   "BatchResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("BatchHidden"),
                   "Input(%s) of GRUOp should not be null.", "BatchHidden");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(%s) of GRUGradOp should not be null.", "Hidden");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
                   "Input(%s@GRAD) of GRUGradOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                      "The input_size must be 3 times of frame_size in GRUOp.");
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
194
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
195 196 197 198 199 200 201
      auto h0_dims = ctx->GetInputDim("H0");
      PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                        "The width of H0 must be equal to frame_size.");
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
202
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
};

223 224 225 226 227
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
Q
Qiao Longfei 已提交
228
    bool origin_mode = context.Attr<bool>("origin_mode");
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
    math::GRUMetaValue<T> gru_value;
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
T
tensor-tang 已提交
277
    size_t seq_len = batch_starts.size() - 1;
278 279 280 281 282 283
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
284
    // use MKL packed to speedup GEMM
T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    if (FLAGS_paddle_num_threads >= 4) {
      auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_gate);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
                     frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_state);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
                     frame_size, T(1.0), gru_value.state_weight, frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;
305

T
tensor-tang 已提交
306 307 308 309 310 311 312
        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
313

T
tensor-tang 已提交
314 315 316 317 318 319
        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
              frame_size, gru_value.prev_out_value, frame_size, packed_gate,
              frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
        }
320

T
tensor-tang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
        math::detail::forward_reset_output(
            math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_gate);

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
              gru_value.reset_output_value, frame_size, packed_state,
              frame_size, T(1), gru_value.gate_value + frame_size * 2,
              frame_size * 3);
        }

        math::detail::forward_final_output(
            math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
Q
Qiao Longfei 已提交
335
            cur_batch_size, active_node, origin_mode);
T
tensor-tang 已提交
336 337

        gru_value.prev_out_value = gru_value.output_value;
338 339
      }

T
tensor-tang 已提交
340 341 342
      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
343
#endif
T
tensor-tang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        math::GRUUnitFunctor<DeviceContext, T>::compute(
            dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
Q
Qiao Longfei 已提交
359
            active_gate, origin_mode);
T
tensor-tang 已提交
360 361 362

        gru_value.prev_out_value = gru_value.output_value;
      }
363
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
364
    }
365 366 367 368 369 370 371 372 373 374 375
#endif
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

G
guosheng 已提交
376 377 378 379
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
380
REGISTER_OPERATOR(gru, ops::GRUOp, ops::GRUOpMaker,
381 382
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(gru_grad, ops::GRUGradOp);
383 384
REGISTER_OP_CPU_KERNEL(gru, ops::GRUCPUKernel<float>,
                       ops::GRUCPUKernel<double>);
Q
QI JUN 已提交
385 386 387
REGISTER_OP_CPU_KERNEL(
    gru_grad, ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);