api_impl.cc 11.2 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/memory/memcpy.h"
28
#include "paddle/fluid/platform/cpu_helper.h"
29 30 31
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
32 33

namespace paddle {
34 35 36 37 38 39 40 41 42 43
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
44

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
66
  VLOG(3) << "Predictor::init()";
67 68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

76
  // no matter with or without MKLDNN
L
luotao1 已提交
77
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
78

Y
Yan Chunwei 已提交
79
  if (config_.use_gpu) {
X
Xin Pan 已提交
80 81 82 83
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
84 85 86
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
87
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
88 89 90 91
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
92

X
Xin Pan 已提交
93
  executor_.reset(new paddle::framework::Executor(place_));
94

X
Xin Pan 已提交
95 96 97 98
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
99 100
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
101 102 103 104 105 106 107
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
108
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
109 110
    return false;
  }
111

X
Xin Pan 已提交
112
  ctx_ = executor_->Prepare(*inference_program_, 0);
113 114
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
115

X
Xin Pan 已提交
116
  // Get the feed_target_names and fetch_target_names
117
  PrepareFeedFetch();
X
Xin Pan 已提交
118 119 120
  return true;
}

121
NativePaddlePredictor::~NativePaddlePredictor() {
122 123 124 125
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
126 127 128
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
129
}
130

Y
Yan Chunwei 已提交
131
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
132 133
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
134
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
135 136 137
  Timer timer;
  timer.tic();
  // set feed variable
138 139
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
140 141 142 143 144
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
145
  VLOG(4) << "Run prepared context";
146 147
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
148
                                false /* don't create variable each time */);
149
  VLOG(4) << "Finish prepared context";
150 151
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
152
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
153 154
    return false;
  }
M
minqiyang 已提交
155
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
156

Y
Yan Chunwei 已提交
157 158 159
  // For some other vector like containers not cleaned after each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(scope_.get());
  tensor_array_batch_cleaner_.ResetNoTensorVars();
X
Xin Pan 已提交
160 161 162
  return true;
}

Y
Yan Chunwei 已提交
163
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
Y
Yan Chunwei 已提交
164 165
  std::lock_guard<std::mutex> lk(clone_mutex_);
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
166
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
Y
Yan Chunwei 已提交
167 168 169
  // Hot fix the bug that result diff in multi-thread.
  // TODO(Superjomn) re-implement a real clone here.
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
Y
Yan Chunwei 已提交
170
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
171 172
    return nullptr;
  }
Y
Yan Chunwei 已提交
173

J
Fix mac  
JiabinYang 已提交
174 175 176 177
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
178 179
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
180
#endif
X
Xin Pan 已提交
181 182
}

Y
Yan Chunwei 已提交
183
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
184
                                    framework::Scope *scope) {
185
  VLOG(3) << "Predictor::set_feed";
186
  if (inputs.size() != feeds_.size()) {
187 188
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
189 190
    return false;
  }
191 192 193 194

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

195
  for (size_t i = 0; i < inputs.size(); ++i) {
196
    auto &input = feed_tensors_[i];
197
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
198 199
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
200
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
X
Xin Pan 已提交
201
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
202
      input_ptr = input.mutable_data<float>(ddim, place_);
X
Xin Pan 已提交
203 204 205 206 207
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

208 209 210 211 212 213
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
214 215 216 217
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
218 219 220
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
221
                   inputs[i].data.length(), dev_ctx->stream());
222 223 224 225 226
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }

Y
Yan Chunwei 已提交
227 228 229 230 231 232
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
233 234
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
235
      idx = feed_names_[inputs[i].name];
236 237 238 239
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
240 241 242
  }
  return true;
}
L
luotao1 已提交
243 244 245
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
246 247 248 249 250 251 252 253 254 255 256 257 258 259
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
260 261
  }
}
X
Xin Pan 已提交
262

263 264
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
265
  VLOG(3) << "Predictor::get_fetch";
266 267 268
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
269 270
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
271
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
272 273
    auto type = fetch.type();
    auto output = &(outputs->at(i));
274
    output->name = fetchs_[idx]->Input("X")[0];
Y
Yu Yang 已提交
275
    if (type == framework::DataTypeTrait<float>::DataType) {
L
luotao1 已提交
276 277
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
278
    } else if (type == framework::DataTypeTrait<int64_t>::DataType) {
L
luotao1 已提交
279 280
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
281
    } else {
L
luotao1 已提交
282
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
283
    }
X
Xin Pan 已提交
284 285 286 287
  }
  return true;
}

288
template <>
289 290
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
291
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
292 293
  if (config.use_gpu) {
    // 1. GPU memeroy
294
    PADDLE_ENFORCE_GE(
295
        config.fraction_of_gpu_memory, 0.f,
296
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
297
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
298 299 300 301 302
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
303
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
304
      flags.push_back(flag);
305
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
306 307
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
308
  }
309

Y
Yan Chunwei 已提交
310
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
311
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
312 313
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
314
#ifdef __clang__
J
Jiabin Yang 已提交
315
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
316 317
  return predictor;
#else
318
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
319
#endif
X
Xin Pan 已提交
320 321
}

Y
Yan Chunwei 已提交
322 323 324 325 326 327
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
328
}  // namespace paddle