layer_norm_op.cc 11.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/layer_norm_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenMatrixMapRowMajor = Eigen::Map<
    Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
template <typename T>
using ConstEigenMatrixMapRowMajor = Eigen::Map<
    const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], 1);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], 1);
C
chengduoZH 已提交
45 46 47 48 49 50 51
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
                      "'begin_norm_axis' must be less than the rank of X");

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
52 53

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
54 55
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size 1 "
             "that is applied to the output");
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size 1 "
             "that is applied to the output");
    AddOutput("Y", "result after normalization");
    AddOutput("Mean", "Mean of the current mini batch.");
    AddOutput("Variance", "Variance of the current mini batch.");

    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
82 83 84 85 86 87 88 89
    AddAttr<int>("begin_norm_axis",
                 "(int default:1), the "
                 "axis of `begin_norm_axis ... Rank(X) - 1` will be normalized")
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    AddComment(R"DOC(
Layer Normalization.

Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

template <typename T>
class LayerNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
chengduoZH 已提交
111
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
C
chengduoZH 已提交
112 113 114 115 116 117 118 119 120 121 122

    auto scale_data = scale->data<T>()[0];
    auto bias_data = bias->data<T>()[0];

    auto *output = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    output->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
123 124 125
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
    auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);

    auto squre = [](T ele) { return ele * ele; };
    auto add_epslion = [epsilon](T ele) { return ele + epsilon; };

    mean_map = input_map.rowwise().mean();
    var_map = (input_map - mean_map.replicate(1, right))
                  .unaryExpr(squre)
                  .rowwise()
                  .mean()
                  .unaryExpr(add_epslion);

    auto scale_inv_std = [scale_data](T ele) {
      return std::sqrt(1 / ele) * scale_data;
    };
    auto sub_bias = [bias_data](T ele) { return bias_data - ele; };
C
chengduoZH 已提交
145 146
    // TODO(zcd): Some thinking about output_map, is it appropriate that
    // `output_map` and `input_map` point to the same memory.
C
chengduoZH 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    output_map = (var_map.unaryExpr(scale_inv_std).replicate(1, right))
                     .cwiseProduct(input_map) +
                 var_map.unaryExpr(scale_inv_std)
                     .cwiseProduct(mean_map)
                     .unaryExpr(sub_bias)
                     .replicate(1, right);
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");

    const auto x_dims = ctx->GetInputDim("X");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {1});
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"), {1});
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

template <typename T>
class LayerNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
C
chengduoZH 已提交
213
    auto scale_data = scale->data<T>()[0];
C
chengduoZH 已提交
214 215 216

    const auto &x_dims = x->dims();

C
chengduoZH 已提交
217 218 219 220
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]),
        right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
    auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias->data<T>()[0] = d_y_map.sum();
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      auto inv_std = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
239 240
      // There are two equation to compute d_scale. One uses "Y" and the other
      // does not use "Y"
C
chengduoZH 已提交
241 242 243 244
      d_scale->data<T>()[0] =
          ((x_map - mean_map.replicate(1, right))
               .cwiseProduct(var_map.unaryExpr(inv_std).replicate(1, right))
               .cwiseProduct(d_y_map))
C
chengduoZH 已提交
245
              .sum();
C
chengduoZH 已提交
246 247 248 249 250
    }

    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
C
chengduoZH 已提交
251 252 253
      auto triple_product_func = [](T ele) { return ele * ele * ele; };
      auto scale_func = [scale_data](T ele) { return ele * scale_data; };
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
254 255 256 257 258 259 260 261
      auto inv_std_scale_func = [scale_data](T ele) {
        return std::sqrt(1 / ele) * scale_data;
      };
      // dy_dx
      auto dx_end = var_map.unaryExpr(inv_std_scale_func)
                        .replicate(1, right)
                        .cwiseProduct(d_y_map);
      // dy_dmean_dx
C
chengduoZH 已提交
262 263 264 265 266 267 268
      auto dx_mean = (T(-1.0) / right) *
                     var_map.unaryExpr(inv_std_scale_func)
                         .replicate(1, right)
                         .cwiseProduct(d_y_map)
                         .rowwise()
                         .sum()
                         .replicate(1, right);
C
chengduoZH 已提交
269
      // dy_var_dx
C
chengduoZH 已提交
270 271 272 273 274 275 276 277 278
      auto dvar_end_part = (x_map - mean_map.replicate(1, right))
                               .cwiseProduct(d_y_map)
                               .rowwise()
                               .sum();
      auto dvar_end = var_map.unaryExpr(inv_std_func)
                          .unaryExpr(triple_product_func)
                          .cwiseProduct(dvar_end_part)
                          .replicate(1, right);
      auto dx_var = (T(-1.0) / right) *
C
chengduoZH 已提交
279
                    (x_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
280 281
                        .cwiseProduct(dvar_end)
                        .unaryExpr(scale_func);
C
chengduoZH 已提交
282

C
chengduoZH 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      d_x_map = dx_end + dx_mean + dx_var;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
            layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>);