cudnn_desc.h 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
W
wanghuancoder 已提交
25

26
#include "paddle/fluid/platform/cudnn_helper.h"
A
AshburnLee 已提交
27
#include "paddle/fluid/platform/device_context.h"
28

W
wanghuancoder 已提交
29 30 31 32 33 34
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

35 36 37 38 39
namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
Q
qingqing01 已提交
40
inline cudnnDataType_t ToCudnnDataType(const T& t) {
41 42 43 44
  auto type = framework::ToDataType(t);
  return ToCudnnDataType(type);
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

68
template <>
Q
qingqing01 已提交
69 70
inline cudnnDataType_t ToCudnnDataType(
    const framework::proto::VarType::Type& t) {
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  cudnnDataType_t type = CUDNN_DATA_FLOAT;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = CUDNN_DATA_HALF;
      break;
    case framework::proto::VarType::FP32:
      type = CUDNN_DATA_FLOAT;
      break;
    case framework::proto::VarType::FP64:
      type = CUDNN_DATA_DOUBLE;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  using T = cudnnActivationStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
94 95
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyActivationDescriptor(t));
96 97 98 99 100 101
        t = nullptr;
      }
    }
  };
  ActivationDescriptor() {
    T* raw_ptr;
102 103
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&raw_ptr));
104 105 106 107
    desc_.reset(raw_ptr);
  }
  template <typename T>
  void set(cudnnActivationMode_t mode, const T& coef) {
108
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
  }

  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class TensorDescriptor {
 public:
  using T = cudnnTensorStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
125
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(t));
126 127 128 129 130 131
        t = nullptr;
      }
    }
  };
  TensorDescriptor() {
    T* raw_ptr;
132
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
133 134 135 136 137
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
  void set(const Tensor& tensor, const int groups = 1) {
138
    auto dims = framework::vectorize<int>(tensor.dims());
139 140 141 142 143 144 145 146 147
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
148
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
149 150 151 152
        desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
        dims_with_group.data(), strides.data()));
  }

153 154 155 156 157 158 159 160
  void set(const Tensor& tensor, const cudnnTensorFormat_t format) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
161
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
162 163 164 165
        desc_.get(), format, ToCudnnDataType(tensor.type()),
        transformed_dims.size(), transformed_dims.data()));
  }

166 167 168 169
 private:
  std::unique_ptr<T, Deleter> desc_;
};

Q
qingqing01 已提交
170 171 172 173 174 175
class FilterDescriptor {
 public:
  using T = cudnnFilterStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
176
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(t));
Q
qingqing01 已提交
177 178 179 180 181 182
        t = nullptr;
      }
    }
  };
  FilterDescriptor() {
    T* raw_ptr;
183
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
Q
qingqing01 已提交
184 185 186 187 188 189 190
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(const Tensor& tensor, const cudnnTensorFormat_t format,
           const int groups = 1) {
191
    auto dims = framework::vectorize<int>(tensor.dims());
192 193 194 195 196 197
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
Q
qingqing01 已提交
198
    if (groups > 1) {
199
      transformed_dims[1] = transformed_dims[1] / groups;
Q
qingqing01 已提交
200
    }
201
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
202 203
        desc_.get(), ToCudnnDataType(tensor.type()), format,
        transformed_dims.size(), transformed_dims.data()));
Q
qingqing01 已提交
204 205 206 207 208 209 210 211 212 213 214 215
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class ConvolutionDescriptor {
 public:
  using T = cudnnConvolutionStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
216 217
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyConvolutionDescriptor(t));
Q
qingqing01 已提交
218 219 220 221 222 223
        t = nullptr;
      }
    }
  };
  ConvolutionDescriptor() {
    T* raw_ptr;
224 225
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
Q
qingqing01 已提交
226 227 228 229 230 231 232
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(cudnnDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
A
AshburnLee 已提交
233 234
           bool allow_tf32, const int groups = 1) {
    allow_tf32_ = allow_tf32;
Q
qingqing01 已提交
235 236 237
    cudnnDataType_t compute_type =
        (dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
    T* desc = desc_.get();
238
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
Q
qingqing01 已提交
239 240 241
        desc, pads.size(), pads.data(), strides.data(), dilations.data(),
        CUDNN_CROSS_CORRELATION, compute_type));
#if CUDNN_VERSION_MIN(7, 0, 1)
242
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
243
        platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
244
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
245
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
246
        desc, CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
247
    if (dtype == CUDNN_DATA_HALF) {
248 249 250
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(desc,
                                                         CUDNN_TENSOR_OP_MATH));
A
AshburnLee 已提交
251 252 253 254 255
    } else if (dtype == CUDNN_DATA_FLOAT && !allow_tf32) {
#if CUDA_VERSION >= 11000
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(desc, CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
Q
qingqing01 已提交
256
    }
257
#endif
Q
qingqing01 已提交
258 259 260
#endif
  }

A
AshburnLee 已提交
261 262
  bool allow_tf32_;

Q
qingqing01 已提交
263 264 265 266
 private:
  std::unique_ptr<T, Deleter> desc_;
};

267 268
}  // namespace platform
}  // namespace paddle