memory_optimization_transpiler.py 19.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import six
18
from collections import defaultdict, MutableSet
19
from .. import core
M
minqiyang 已提交
20
from ... import compat as cpt
21
from ..framework import Program, default_main_program, Parameter, Variable, core
22
from ..backward import _rename_arg_
23
from functools import reduce
24
from six.moves import range
25 26

dtype_to_size = {
27 28 29 30 31 32
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
33 34
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
35
}
36

37
SUB_BLOCK_OPS = [
38 39 40
    "while", "while_grad", "parallel_do", "parallel_do_grad",
    "conditional_block", "conditional_block_grad"
]
41

42 43 44
SUB_BLOCK_PAIR = [("while", "while_grad"), ("parallel_do", "parallel_do_grad"),
                  ("conditional_block", "conditional_block_grad")]

Q
qiaolongfei 已提交
45 46
PRINT_LOG = False

47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class OrderedSet(MutableSet):
    def __init__(self, iterable=None):
        self.end = end = []
        end += [None, end, end]  # sentinel node for doubly linked list
        self.map = {}  # key --> [key, prev, next]
        if iterable is not None:
            self |= iterable

    def __len__(self):
        return len(self.map)

    def __contains__(self, key):
        return key in self.map

    def add(self, key):
        if key not in self.map:
            end = self.end
            curr = end[1]
            curr[2] = end[1] = self.map[key] = [key, curr, end]

    def update(self, other):
        for e in other:
            self.add(e)

    def discard(self, key):
        if key in self.map:
            key, prev, next = self.map.pop(key)
            prev[2] = next
            next[1] = prev

    def remove(self, key):
        self.discard(key)

    def __iter__(self):
        end = self.end
        curr = end[2]
        while curr is not end:
            yield curr[0]
            curr = curr[2]

    def __reversed__(self):
        end = self.end
        curr = end[1]
        while curr is not end:
            yield curr[0]
            curr = curr[1]

    def pop(self, last=True):
        if not self:
            raise KeyError('set is empty')
        key = self.end[1][0] if last else self.end[2][0]
        self.discard(key)
        return key

    def __repr__(self):
        if not self:
            return '%s()' % (self.__class__.__name__, )
        return '%s(%r)' % (self.__class__.__name__, list(self))

    def __eq__(self, other):
        if isinstance(other, OrderedSet):
            return len(self) == len(other) and list(self) == list(other)
        return set(self) == set(other)


113
class ControlFlowGraph(object):
114 115
    def __init__(self, program, ops, forward_num, skip_opt):
        self._program = program
116 117
        self._ops = ops
        self._forward_num = forward_num
118 119 120 121 122 123
        self._successors = defaultdict(OrderedSet)
        self._presuccessors = defaultdict(OrderedSet)
        self._uses = defaultdict(OrderedSet)
        self._defs = defaultdict(OrderedSet)
        self._live_in = defaultdict(OrderedSet)
        self._live_out = defaultdict(OrderedSet)
124
        self._skip_opt = skip_opt
D
dzhwinter 已提交
125
        self.pool = []
126 127

    def _add_connections(self, connections):
128
        """Populates _successors and _presuccessors for two neighbor nodes."""
129 130 131 132
        for node1, node2 in connections:
            self._add(node1, node2)

    def _add(self, node1, node2):
133 134
        self._successors[node1].add(node2)
        self._presuccessors[node2].add(node1)
135

136 137
    # TODO(panyx0718): We need to have a unified way of building intermediate
    # representation.
138
    def _build_graph(self):
139 140
        """Build a graph based on op sequence.
        """
141
        self.op_size = len(self._ops)
142 143 144
        op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
        self._add_connections(op_node_connections)
        for i in range(self.op_size):
145 146
            self._uses[i].update(self._ops[i].input_arg_names())
            self._defs[i].update(self._ops[i].output_arg_names())
D
dzhwinter 已提交
147
            self._live_in[i] = self._uses[i]
148

149 150 151 152 153 154 155 156 157 158
    def _update_graph(self, old_name, new_name, begin_idx=0):
        for i in range(begin_idx, self.op_size):
            if old_name in self._uses[i]:
                self._uses[i].remove(old_name)
                self._uses[i].add(new_name)
            if old_name in self._defs[i]:
                self._defs[i].remove(old_name)
                self._defs[i].add(new_name)
            if old_name in self._live_in[i]:
                self._live_in[i].remove(old_name)
D
dzhwinter 已提交
159
                self._live_in[i].add(new_name)
160 161 162 163
            if old_name in self._live_out[i]:
                self._live_out[i].remove(old_name)
                self._live_out[i].add(new_name)

164 165 166
    def _dataflow_analyze(self):
        self._build_graph()
        live_in = defaultdict(set)
D
dzhwinter 已提交
167 168 169 170 171 172 173 174
        worklist = list(range(len(self._ops) - 1, -1, -1))
        while worklist:
            i = worklist.pop(0)
            live_in[i] = set(self._live_in[i])
            for s in self._successors[i]:
                self._live_out[i] |= self._live_in[s]
            self._live_in[i] = self._uses[i] | (
                self._live_out[i] - self._defs[i])
D
dongzhihong 已提交
175
            if live_in[i] != set(self._live_in[i]):
D
dzhwinter 已提交
176 177
                for d in self._presuccessors[i]:
                    worklist.append(d)
178

D
dzhwinter 已提交
179 180 181
    def _fill_pool(self, i, is_forward):
        block_desc = self._ops[i].block()
        in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i])
182 183
        # NOTE: must sort the in_diff set for cases that get different cache var.
        # FIXME(typhoonzero): maybe use a "sorted set" is better than this.
D
dzhwinter 已提交
184
        can_optimize = [
185
            x for x in in_diff
D
dzhwinter 已提交
186 187 188 189
            if self._check_var_validity(block_desc, x, is_forward)
        ]
        if can_optimize:
            for var_name in can_optimize:
D
dzhwinter 已提交
190 191
                cache = (var_name, self._find_var(block_desc, var_name,
                                                  is_forward).shape())
D
dzhwinter 已提交
192 193
                if cache not in self.pool:
                    self.pool.append(cache)
194 195 196 197 198

    def _get_diff(self, a, b):
        u = a & b
        return a - u, b - u

199 200
    def _has_var(self, block_desc, var_name, is_forward):
        if is_forward:
M
minqiyang 已提交
201
            return block_desc.has_var(cpt.to_bytes(var_name))
202
        else:
M
minqiyang 已提交
203
            return block_desc.has_var_recursive(cpt.to_bytes(var_name))
204 205 206

    def _find_var(self, block_desc, var_name, is_forward):
        if is_forward:
M
minqiyang 已提交
207
            return block_desc.find_var(cpt.to_bytes(var_name))
208
        else:
M
minqiyang 已提交
209
            return block_desc.find_var_recursive(cpt.to_bytes(var_name))
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def _check_var_validity(self, block_desc, x, is_forward):
        if str(x) == "@EMPTY@":
            return False
        if not self._has_var(block_desc, x, is_forward):
            return False
        if self._find_var(block_desc, x, is_forward).persistable():
            return False
        if self._find_var(block_desc, x,
                          is_forward).type() != core.VarDesc.VarType.LOD_TENSOR:
            return False
        if x in self._skip_opt:
            return False
        if not self._find_var(block_desc, x, is_forward).shape():
            return False
        return True
226

227 228
    # TODO(panyx0718): This needs to be less hacky. It seems memory optimization
    # doesn't consider vars copied between cpu and gpu.
229 230 231 232 233 234
    def _update_skip_opt_set(self):
        for i in range(self.op_size):
            op = self._ops[i]
            if op.type() == "fill_constant" and op.attr("force_cpu") == True:
                self._skip_opt.update(op.output_arg_names())

235
    def release_memory(self, skip_opt_set=None):
236
        self._dataflow_analyze()
237
        self._update_skip_opt_set()
238 239
        if skip_opt_set:
            self._skip_opt.update(skip_opt_set)
240 241 242 243
        fwd_id = 0
        bwd_id = 0
        for i in range(self.op_size):
            op = self._ops[i]
244
            if op.type() in SUB_BLOCK_OPS:
245 246 247 248 249
                continue
            block_desc = op.block()
            is_forward = i < self._forward_num
            in_diff, out_diff = self._get_diff(self._live_in[i],
                                               self._live_out[i])
250 251 252 253
            can_optimize = [
                x for x in in_diff
                if self._check_var_validity(block_desc, x, is_forward)
            ]
254 255
            if can_optimize:
                index = i + fwd_id + 1 if is_forward else i - self._forward_num + bwd_id + 1
W
Wu Yi 已提交
256
                delete_op = block_desc._insert_op(index)
257 258 259 260 261 262 263
                delete_op.set_type("delete_var")
                delete_op.set_input("X", can_optimize)
                if is_forward:
                    fwd_id += 1
                else:
                    bwd_id += 1

264
    def memory_optimize(self, skip_opt_set=None, level=0):
265 266 267
        def compare_shape(x_shape, cache_shape, opt_level):
            if opt_level == 0:
                return x_shape == cache_shape
268
            elif opt_level == 1:
269 270 271 272 273 274
                if (x_shape[0] == -1) ^ (cache_shape[0] == -1):
                    return False
                x_size = abs(reduce(lambda x, y: x * y, x_shape))
                cache_size = abs(reduce(lambda x, y: x * y, cache_shape))
                if x_size <= cache_size:
                    return True
275 276
            else:
                raise ValueError("only support opt_level 0 or 1.")
277 278 279 280
            return False

        self._dataflow_analyze()
        self._update_skip_opt_set()
281 282 283
        # update skip set to meet users' demand
        if skip_opt_set:
            self._skip_opt.update(skip_opt_set)
284
        for i in range(self.op_size):
285
            op = self._ops[i]
286
            if op.type() in SUB_BLOCK_OPS:
287 288 289
                continue
            block_desc = op.block()
            is_forward = i < self._forward_num
290
            if self.pool:
291
                # NOTE: must sort the in_diff set for cases that get different cache var.
292
                defs_can_optimize = [
293
                    x for x in self._defs[i]
294 295
                    if self._check_var_validity(block_desc, x, is_forward)
                ]
296 297 298 299
                out_pair = [
                    (x, self._find_var(block_desc, x, is_forward).shape())
                    for x in defs_can_optimize
                ]
300
                for x, x_shape in out_pair:
301 302 303
                    # If x is both in uses and defs, it can not be optimized!
                    if x in self._uses[i]:
                        continue
304 305 306
                    for index, cache_pair in enumerate(self.pool):
                        cache_var = cache_pair[0]
                        cache_shape = cache_pair[1]
307
                        if not self._has_var(block_desc, cache_var, is_forward):
D
"rerun"  
dzhwinter 已提交
308 309 310
                            if PRINT_LOG:
                                print("cache %s not exists!" %
                                      (cpt.to_text(cache_var)))
311
                            continue
D
dzhwinter 已提交
312
                        if x == cache_var:
D
"rerun"  
dzhwinter 已提交
313 314 315 316
                            if PRINT_LOG:
                                print("x : ", cpt.to_text(x), " cache : ",
                                      cpt.to_text(cache_var), " is same var!")
                            break
317 318 319 320 321

                        x_dtype = self._find_var(block_desc, x,
                                                 is_forward).dtype()
                        cache_dtype = self._find_var(block_desc, cache_var,
                                                     is_forward).dtype()
D
dzhwinter 已提交
322 323 324

                        if not compare_shape(x_shape, cache_shape, level):
                            continue
D
dongzhihong 已提交
325
                        # TODO(qijun): dtype_to_size[x_dtype] and dtype_to_size[cache_dtype]
326 327 328 329
                        if x_dtype != cache_dtype:
                            continue

                        if PRINT_LOG:
330 331 332 333 334
                            print(("Hit Cache !!!! cache pool index "
                                   "is %d, var name is %s, "
                                   "cached var name is %s, "
                                   "var shape is %s ") % (index, x, cache_var,
                                                          str(cache_shape)))
335 336 337 338
                        self.pool.pop(index)
                        # Rename the var to the cache var already with
                        # memory allocated in order to reuse the memory.
                        _rename_arg_(self._ops, x, cache_var, begin_idx=i)
M
minqiyang 已提交
339 340 341
                        self._program.block(block_desc.id).var(cpt.to_text(
                            x)).desc = self._find_var(block_desc, cache_var,
                                                      is_forward)
342 343
                        self._program.block(block_desc.id).vars[cpt.to_text(x)] = \
                            Variable(self._program.block(block_desc.id), name=cpt.to_text(x))
344 345
                        self._update_graph(x, cache_var, begin_idx=i)
                        break
D
dzhwinter 已提交
346
            self._fill_pool(i, is_forward)
347 348


349
def _process_sub_block_pair(pdesc, sub_block_pair):
350 351 352 353 354 355 356 357 358 359 360 361 362
    """Creates a list of tuple each of which tracks info of a subblock.

      Note: this function doesn't handle nested subblocks yet.
      TODO(panyx0718): assert if case nested subblocks happen.

    :param pdesc: ProgramDesc.
    :param sub_block_pair: A list op pairs. Each op pair is the forward
        op and backward op. The ops in the list are special that they contain
        a subblock of ops.
    :return: A list of tuples, each tuple is (all ops in a subblock pair
        including forward and backward, number of forward ops,
        all output args names of the ops in the subblock pairs).
    """
363 364 365
    ops_list = []
    block_desc = pdesc.block(0)
    op_size = block_desc.op_size()
366 367 368 369 370 371 372 373 374 375 376 377 378
    for fwd_op, bwd_op in sub_block_pair:
        sub_block_ids = []
        grad_sub_block_ids = []
        sub_block_id_pair = []
        sub_op_dict = {}
        for i in range(op_size):
            op = block_desc.op(i)
            if op.type() == fwd_op:
                sub_block_ids.append(op.attr("sub_block").id)
                sub_op_dict[op.attr("sub_block").id] = op
            elif op.type() == bwd_op:
                grad_sub_block_ids.append(op.attr("sub_block").id)
                sub_op_dict[op.attr("sub_block").id] = op
379

380 381
        # Find fwd_op/bwd_op block pair
        for grad_id in grad_sub_block_ids:
Q
qijun 已提交
382 383 384 385
            fwd_id = pdesc.block(grad_id).get_forward_block_idx()
            if fwd_id in sub_block_ids:
                sub_block_id_pair.append((fwd_id, grad_id))
                sub_block_ids.remove(fwd_id)
386

387
        # Get fwd_op/bwd_op block ops
Q
qijun 已提交
388
        for fwd_id, grad_id in sub_block_id_pair:
389
            sub_block_ops = []
Q
qijun 已提交
390
            sub_block = pdesc.block(fwd_id)
391 392 393
            block_op_size = sub_block.op_size()
            for i in range(block_op_size):
                sub_block_ops.append(sub_block.op(i))
394

395 396 397 398
            grad_sub_block = pdesc.block(grad_id)
            grad_sub_block_op_size = grad_sub_block.op_size()
            for i in range(grad_sub_block_op_size):
                sub_block_ops.append(grad_sub_block.op(i))
399

400
            sub_op_output = set()
Q
qijun 已提交
401
            sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
402
            sub_op_output.update(sub_op_dict[grad_id].output_arg_names())
403 404
            sub_op_output.update(sub_op_dict[fwd_id].input_arg_names())
            sub_op_output.update(sub_op_dict[grad_id].input_arg_names())
405
            ops_list.append((sub_block_ops, block_op_size, sub_op_output))
406

407
        # Process rest fwd_op block ops
Q
qijun 已提交
408
        for fwd_id in sub_block_ids:
409
            sub_block_ops = []
Q
qijun 已提交
410
            sub_block = pdesc.block(fwd_id)
411 412 413 414
            sub_block_op_size = sub_block.op_size()
            for i in range(sub_block_op_size):
                sub_block_ops.append(sub_block.op(i))
            sub_op_output = set()
Q
qijun 已提交
415
            sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
416
            sub_op_output.update(sub_op_dict[fwd_id].input_arg_names())
417 418
            ops_list.append((sub_block_ops, sub_block_op_size, sub_op_output))
    return ops_list
419

420

421
def _get_cfgs(input_program):
422 423 424 425 426
    """Process each block and create ControlFlowGraph for each of them.

    :param input_program: Program object.
    :return: A list of ControlFlowGraph, each corresponds to a block.
    """
427
    ops_list = []
W
Wu Yi 已提交
428
    pdesc = input_program._get_desc()
429 430
    block_desc = pdesc.block(0)
    op_size = block_desc.op_size()
431

432 433
    # Only process one level of nested subblock.
    ops_list.extend(_process_sub_block_pair(pdesc, SUB_BLOCK_PAIR))
434

435 436 437 438 439 440 441
    skip_opt_set = set()
    for _, _, skip_opt in ops_list:
        skip_opt_set.update(skip_opt)

    # Get global block ops
    ops_list.insert(
        0, ([block_desc.op(i) for i in range(op_size)], op_size, skip_opt_set))
442 443 444 445
    cfgs = [
        ControlFlowGraph(input_program, ops, forward_num, skip_opt)
        for ops, forward_num, skip_opt in ops_list
    ]
446
    return cfgs
447 448


449 450 451 452 453 454 455 456 457 458 459 460 461
def _is_opt_role_op(op):
    op_maker = core.op_proto_and_checker_maker
    optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
    if op_maker.kOpRoleAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
        return True


def memory_optimize(input_program,
                    skip_opt_set=None,
                    print_log=False,
                    level=0,
                    skip_grads=False):
462 463 464 465
    """Optimize memory by reusing var memory.

      Note: it doesn't not support subblock nested in subblock.

D
"rerun"  
dzhwinter 已提交
466 467 468 469 470 471 472
    Args:
        input_program(str): Input Program
        skip_opt_set(set): vars wil be skipped in memory optimze
        print_log(bool): whether to print debug log.
        level(int): If level=0, reuse if the shape is completely equal, o
    Returns:
        None
473
    """
474 475 476 477 478 479 480 481 482 483 484

    def to_name_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        else:
            raise TypeError(str(var) + " should be Variable or str")

485 486
    if level != 0 and level != 1:
        raise ValueError("only support opt_level 0 or 1.")
487 488
    if skip_opt_set is not None and not isinstance(skip_opt_set, set):
        raise ValueError("only support skip_opt_set as set.")
Q
qiaolongfei 已提交
489 490
    global PRINT_LOG
    PRINT_LOG = print_log
491 492 493 494 495 496 497 498 499 500 501 502
    if skip_grads:
        grad_set = set()
        OP_ROLE_VAR = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        for op in input_program.global_block().ops:
            if _is_opt_role_op(op):
                if op.attr(OP_ROLE_VAR):
                    grad_name = op.attr(OP_ROLE_VAR)[1]
                    grad_set.add(grad_name)
        if not skip_opt_set:
            skip_opt_set = grad_set
        else:
            skip_opt_set.update(grad_set)
503 504
    if skip_opt_set is not None:
        skip_opt_set = set(map(to_name_str, skip_opt_set))
505
    cfgs = _get_cfgs(input_program)
506
    for cfg in cfgs:
507
        cfg.memory_optimize(skip_opt_set=skip_opt_set, level=level)
508 509


510
def release_memory(input_program, skip_opt_set=None):
Y
yuyang18 已提交
511 512 513 514 515 516 517 518 519
    """
    Modify the input program and insert :code:`delete_op` to early drop not used
    variables. The modification will be performed inplace.

    Notes: This is an experimental API and could be removed in next few
    releases. Users should not use this API.

    Args:
        input_program(Program): The program will be inserted :code:`delete_op`.
D
"rerun"  
dzhwinter 已提交
520 521 522
        skip_opt_set(set): vars wil be skipped in memory optimze
    Returns:
        None
Y
yuyang18 已提交
523
    """
524 525
    cfgs = _get_cfgs(input_program)
    for cfg in cfgs:
526
        cfg.release_memory(skip_opt_set=skip_opt_set)