collective_allgather_api.py 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import paddle
import paddle.fluid as fluid
19
import pickle
20
import paddle.fluid.layers as layers
21
import test_collective_api_base as test_base
22

P
pangyoki 已提交
23 24
paddle.enable_static()

25

26
class TestCollectiveAllgatherAPI(test_base.TestCollectiveAPIRunnerBase):
27

28 29 30
    def __init__(self):
        self.global_ring_id = 0

31 32
    def get_model(self, main_prog, startup_program, rank, dtype=None):
        dtype = "float32" if dtype is None else dtype
33 34
        with fluid.program_guard(main_prog, startup_program):
            tensor_list = []
35
            tindata = layers.data(name="tindata", shape=[10, 1000], dtype=dtype)
36 37 38
            paddle.distributed.all_gather(tensor_list, tindata)
            return tensor_list

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        paddle.distributed.init_parallel_env()
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            place = fluid.CPUPlace()
        indata = test_base.create_test_data(shape=(10, 1000),
                                            dtype=args["dtype"],
                                            seed=os.getpid())
        assert args[
            'static_mode'] == 1, "collective_allgather_api only support static mode"
        result = self.get_model(train_prog,
                                startup_prog,
                                rank,
                                dtype=args["dtype"])
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        fetch_list = []
        for elem in result:
            fetch_list.append(elem.name)
        out = exe.run(train_prog,
                      feed={'tindata': indata},
                      fetch_list=fetch_list)
        sys.stdout.buffer.write(pickle.dumps(out))

75 76

if __name__ == "__main__":
77
    test_base.runtime_main(TestCollectiveAllgatherAPI, "allgather")