channel_impl.h 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <stddef.h>  // for size_t
#include <atomic>
#include <condition_variable>
#include <deque>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {

template <typename T>
class ChannelImpl : public paddle::framework::Channel<T> {
  friend Channel<T> *paddle::framework::MakeChannel<T>(size_t);
  friend void paddle::framework::CloseChannel<T>(Channel<T> *);

 public:
32 33
  virtual bool CanSend();
  virtual bool CanReceive();
34
  virtual void Send(T *);
35 36 37 38
  virtual bool Receive(T *);
  virtual size_t Cap() { return cap_; }
  virtual void Lock();
  virtual void Unlock();
39
  virtual bool IsClosed();
40 41 42 43
  virtual void Close();
  ChannelImpl(size_t);
  virtual ~ChannelImpl();

44 45 46 47 48 49 50 51 52 53
  virtual void AddToSendQ(const void *referrer, T *data,
                          std::shared_ptr<std::condition_variable_any> cond,
                          std::function<bool(ChannelAction)> cb);
  virtual void AddToReceiveQ(const void *referrer, T *data,
                             std::shared_ptr<std::condition_variable_any> cond,
                             std::function<bool(ChannelAction)> cb);

  virtual void RemoveFromSendQ(const void *referrer);
  virtual void RemoveFromReceiveQ(const void *referrer);

54 55 56
 private:
  struct QueueMessage {
    T *data;
57
    std::shared_ptr<std::condition_variable_any> cond;
58 59
    bool chan_closed = false;
    bool completed = false;
60 61
    const void *referrer;  // TODO(thuan): figure out better way to do this
    std::function<bool(ChannelAction)> callback;
62

63 64 65 66 67
    QueueMessage(T *item)
        : data(item), cond(std::make_shared<std::condition_variable_any>()) {}

    QueueMessage(T *item, std::shared_ptr<std::condition_variable_any> cond)
        : data(item), cond(cond) {}
68 69

    void Wait(std::unique_lock<std::recursive_mutex> &lock) {
70
      cond->wait(lock, [this]() { return completed; });
71 72 73 74
    }

    void Notify() {
      completed = true;
75
      cond->notify_all();
76 77 78
    }
  };

79
  void send_return() {
80 81 82 83 84 85 86 87 88 89
    send_ctr--;
    destructor_cond_.notify_all();
  }

  bool recv_return(bool value) {
    recv_ctr--;
    destructor_cond_.notify_all();
    return value;
  }

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  std::shared_ptr<QueueMessage> get_first_message(
      std::deque<std::shared_ptr<QueueMessage>> &queue, ChannelAction action) {
    while (!queue.empty()) {
      // Check whether this message was added by Select
      // If this was added by Select then execute the callback
      // to check if you can execute this message. The callback
      // can return false if some other case was executed in Select.
      // In that case just discard this QueueMessage and process next.
      std::shared_ptr<QueueMessage> m = queue.front();
      queue.pop_front();
      if (m->callback == nullptr || m->callback(action)) return m;
    }
    return nullptr;
  }

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  size_t cap_;
  std::recursive_mutex mu_;
  bool closed_;
  std::deque<T> buf_;
  std::deque<std::shared_ptr<QueueMessage>> recvq;
  std::deque<std::shared_ptr<QueueMessage>> sendq;
  std::atomic<unsigned> send_ctr{0};
  std::atomic<unsigned> recv_ctr{0};
  std::condition_variable_any destructor_cond_;
};

template <typename T>
ChannelImpl<T>::ChannelImpl(size_t capacity)
    : cap_(capacity), closed_(false), send_ctr(0), recv_ctr(0) {
  PADDLE_ENFORCE_GE(capacity, 0);
}

122 123 124 125 126 127 128 129 130 131 132 133
template <typename T>
bool ChannelImpl<T>::CanSend() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return !closed_ && (!recvq.empty() || buf_.size() < cap_);
}

template <typename T>
bool ChannelImpl<T>::CanReceive() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return !(closed_ && buf_.empty()) && (!sendq.empty() || buf_.size() > 0);
}

134
template <typename T>
135
void ChannelImpl<T>::Send(T *item) {
136 137 138
  send_ctr++;
  std::unique_lock<std::recursive_mutex> lock{mu_};

139
  // If channel is closed, throw exception
140 141
  if (closed_) {
    lock.unlock();
142 143
    send_return();
    PADDLE_THROW("Cannot send on closed channel");
144 145 146 147 148
  }

  // If there is a receiver, directly pass the value we want
  // to send to the receiver, bypassing the channel buffer if any
  if (!recvq.empty()) {
149 150 151 152
    std::shared_ptr<QueueMessage> m =
        get_first_message(recvq, ChannelAction::SEND);

    if (m != nullptr) {
153
      *(m->data) = std::move(*item);
154 155 156 157 158
      m->Notify();
      lock.unlock();
      send_return();
      return;
    } else {
159 160 161 162 163
      lock.unlock();
      Send(item);
      send_return();
      return;
    }
164 165 166 167 168 169 170 171 172 173
  }

  // Unbuffered channel will always bypass this
  // If buffered channel has space in buffer,
  // write the element to the buffer.
  if (buf_.size() < cap_) {
    // Copy to buffer
    buf_.push_back(std::move(*item));
    // Release lock and return true
    lock.unlock();
174 175
    send_return();
    return;
176 177 178 179 180 181 182
  }

  // Block on channel, because some receiver will complete
  // the operation for us
  auto m = std::make_shared<QueueMessage>(item);
  sendq.push_back(m);
  m->Wait(lock);
183 184 185 186 187 188
  if (m->chan_closed) {
    lock.unlock();
    send_return();
    PADDLE_THROW("Cannot send on closed channel");
  }
  send_return();
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
}

template <typename T>
bool ChannelImpl<T>::Receive(T *item) {
  recv_ctr++;
  std::unique_lock<std::recursive_mutex> lock{mu_};

  // If channel is closed and buffer is empty or
  // channel is unbuffered
  if (closed_ && buf_.empty()) {
    lock.unlock();
    return recv_return(false);
  }

  // If there is a sender, directly receive the value we want
204 205
  // from the sender. In case of a buffered channel, read from
  // buffer and move front of send queue to the buffer
206
  if (!sendq.empty()) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    std::shared_ptr<QueueMessage> m =
        get_first_message(sendq, ChannelAction::RECEIVE);
    if (buf_.size() > 0) {
      // Case 1 : Channel is Buffered
      // Do Data transfer from front of buffer
      // and add a QueueMessage to the buffer
      *item = std::move(buf_.front());
      buf_.pop_front();
      // If first message from sendq is not null
      // add it to the buffer and notify it
      if (m != nullptr) {
        // Copy to buffer
        buf_.push_back(std::move(*(m->data)));
        m->Notify();
      }  // Ignore if there is no first message
    } else {
      // Case 2: Channel is Unbuffered
      // Do data transfer from front of SendQ
      // If front is nullptr, then recursively call itself
      if (m != nullptr) {
        *item = std::move(*(m->data));
        m->Notify();
      } else
        return recv_return(Receive(item));
    }
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    lock.unlock();
    return recv_return(true);
  }

  // If this is a buffered channel and there are items in buffer
  if (buf_.size() > 0) {
    // Directly read from buffer
    *item = std::move(buf_.front());
    buf_.pop_front();
    // Release lock and return true
    lock.unlock();
    return recv_return(true);
  }

  // No sender available, block on this channel
  // Some receiver will complete the option for us
  auto m = std::make_shared<QueueMessage>(item);
  recvq.push_back(m);
  m->Wait(lock);

  return recv_return(!m->chan_closed);
}

template <typename T>
void ChannelImpl<T>::Lock() {
  mu_.lock();
}

template <typename T>
void ChannelImpl<T>::Unlock() {
  mu_.unlock();
}

265 266 267 268 269 270
template <typename T>
bool ChannelImpl<T>::IsClosed() {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  return closed_;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
template <typename T>
void ChannelImpl<T>::Close() {
  std::unique_lock<std::recursive_mutex> lock{mu_};

  if (closed_) {
    // TODO(abhinavarora): closing an already closed channel should panic
    lock.unlock();
    return;
  }

  closed_ = true;

  // Empty the readers
  while (!recvq.empty()) {
    std::shared_ptr<QueueMessage> m = recvq.front();
    recvq.pop_front();
    m->chan_closed = true;
288 289 290 291 292 293

    // Execute callback function (if any)
    if (m->callback != nullptr) {
      m->callback(ChannelAction::CLOSE);
    }

294 295 296 297 298 299 300 301
    m->Notify();
  }

  // Empty the senders
  while (!sendq.empty()) {
    std::shared_ptr<QueueMessage> m = sendq.front();
    sendq.pop_front();
    m->chan_closed = true;
302 303 304 305 306 307

    // Execute callback function (if any)
    if (m->callback != nullptr) {
      m->callback(ChannelAction::CLOSE);
    }

308 309 310 311
    m->Notify();
  }
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
template <typename T>
void ChannelImpl<T>::AddToSendQ(
    const void *referrer, T *data,
    std::shared_ptr<std::condition_variable_any> cond,
    std::function<bool(ChannelAction)> cb) {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  auto m = std::make_shared<QueueMessage>(data, cond);
  m->referrer = referrer;
  m->callback = cb;
  sendq.push_back(m);
}

template <typename T>
void ChannelImpl<T>::AddToReceiveQ(
    const void *referrer, T *data,
    std::shared_ptr<std::condition_variable_any> cond,
    std::function<bool(ChannelAction)> cb) {
  std::lock_guard<std::recursive_mutex> lock{mu_};
  auto m = std::make_shared<QueueMessage>(data, cond);
  m->referrer = referrer;
  m->callback = cb;
  recvq.push_back(m);
}

template <typename T>
void ChannelImpl<T>::RemoveFromSendQ(const void *referrer) {
  std::lock_guard<std::recursive_mutex> lock{mu_};

  for (auto it = sendq.begin(); it != sendq.end();) {
    std::shared_ptr<QueueMessage> sendMsg = (std::shared_ptr<QueueMessage>)*it;

    if (sendMsg->referrer == referrer) {
      it = sendq.erase(it);
    } else {
      ++it;
    }
  }
}

template <typename T>
void ChannelImpl<T>::RemoveFromReceiveQ(const void *referrer) {
  std::lock_guard<std::recursive_mutex> lock{mu_};

  for (auto it = recvq.begin(); it != recvq.end();) {
    std::shared_ptr<QueueMessage> recvMsg = (std::shared_ptr<QueueMessage>)*it;

    if (recvMsg->referrer == referrer) {
      it = recvq.erase(it);
    } else {
      ++it;
    }
  }
}

366 367 368 369 370 371 372 373 374 375 376 377
template <typename T>
ChannelImpl<T>::~ChannelImpl() {
  Close();
  // The destructor must wait for all readers and writers to complete their task
  // The channel has been closed, so we will not accept new readers and writers
  std::unique_lock<std::recursive_mutex> lock{mu_};
  destructor_cond_.wait(lock,
                        [this]() { return send_ctr == 0 && recv_ctr == 0; });
}

}  // namespace framework
}  // namespace paddle