elementwise_sub_op.h 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15
#pragma once
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
29 30 31 32 33 34 35
  if (x->numel() >= y->numel()) {
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
36 37 38 39 40 41 42
}

template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseSub {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
43 44
};

Q
QI JUN 已提交
45
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
46
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
47 48
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
49 50 51
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
52
    z->mutable_data<T>(ctx.GetPlace());
53 54 55 56 57 58 59 60

    auto dims_equal = x->dims() == y->dims();
    if (dims_equal) {
      SameDimsElemwiseSub<DeviceContext, T> same_dims_sub;
      same_dims_sub(ctx, x, y, z);
    } else {
      default_elementwise_sub<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
61 62 63 64
  }
};

template <typename T>
C
chengduoZH 已提交
65 66
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
67 68 69
};

template <typename T>
C
chengduoZH 已提交
70 71
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
72 73
};

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
99
template <typename DeviceContext, typename T>
100
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
101 102
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
103
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
104 105
    using Tensor = framework::Tensor;

106 107
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
C
chengduoZH 已提交
108 109 110 111
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
112
    // skip out
113
    auto* out = dout;
114 115 116 117 118 119 120
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(),
          SubGradDY<T>());
    }
G
gongweibao 已提交
121 122
  }
};
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

template <typename DeviceContext, typename T>
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* ddout = ctx.Output<Tensor>("DDOut");

    // DDOut = ddx - ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      int axis = ctx.Attr<int>("axis");
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
    }
  }
};

G
gongweibao 已提交
151 152
}  // namespace operators
}  // namespace paddle