elementwise_add_op.h 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22
namespace paddle {
namespace operators {

23
template <typename DeviceContext, typename T>
C
chengduo 已提交
24 25 26
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
27
  int axis = ctx.Attr<int>("axis");
28 29 30 31 32 33 34
  if (x->numel() >= y->numel()) {
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
35 36
}

37 38 39 40 41 42
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
43

Q
QI JUN 已提交
44
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
45
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
46
 public:
C
chengduo 已提交
47 48 49 50
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
51
    z->mutable_data<T>(ctx.GetPlace());
52
    auto dims_equal = x->dims() == y->dims();
53
    if (dims_equal) {
54 55
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
56
    } else {
57
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
58
    }
G
gongweibao 已提交
59 60 61 62
  }
};

template <typename T>
Y
Yu Yang 已提交
63 64
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
65 66
};

67
template <typename DeviceContext, typename T>
C
chengduo 已提交
68 69 70 71 72 73 74
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
75 76
  int axis = ctx.Attr<int>("axis");

77 78 79 80
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
81 82
}

83
template <typename DeviceContext, typename T>
84 85 86
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
87 88 89 90 91
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
92 93 94 95 96 97 98 99 100 101 102 103
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

104
template <typename DeviceContext, typename T>
105
typename std::enable_if<
106 107
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
108 109 110 111 112
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
113 114 115
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

116 117 118 119 120 121 122 123 124 125 126 127
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
#endif

Q
QI JUN 已提交
128
template <typename DeviceContext, typename T>
129
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
130
 public:
C
chengduo 已提交
131
  void Compute(const framework::ExecutionContext &ctx) const override {
132 133
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
134 135
    using Tensor = framework::Tensor;

136 137
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
138 139 140
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
141
    // skip out
C
chengduo 已提交
142
    auto *out = dout;
143

144
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
T
tensor-tang 已提交
145
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
146
    } else {
T
tensor-tang 已提交
147 148
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
149
    }
G
gongweibao 已提交
150 151 152
  }
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
    }
  }
};

G
gongweibao 已提交
179 180
}  // namespace operators
}  // namespace paddle