collective.py 15.5 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

__all__ = ['GradAllReduce', 'LocalSGD']

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.endpoints = None
        self.current_endpoint = None
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
H
hutuxian 已提交
68
        if self.nranks == 1 and self.mode != "single_process_multi_thread":
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
94 95 96 97
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
98 99 100 101 102 103 104
        self._broadcast_params()

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
105 106
        block = program.global_block()

107 108 109 110
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        if core.is_compiled_with_npu():
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
            block.append_op(
                type='c_gen_hccl_id',
                inputs={},
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': nranks,
                    self.op_role_key: OpRole.Forward
                })
        else:
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    self.op_role_key: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': nccl_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    self.op_role_key: OpRole.Forward
                })
163 164 165

    def _broadcast_params(self):
        block = self.startup_program.global_block()
166 167
        ring_id = -1
        for param in block.iter_parameters():
168 169 170
            if param.is_distributed:
                continue

171
            ring_id = (ring_id + 1) % self.nrings
172 173
            block.append_op(
                type='c_broadcast',
174 175
                inputs={'X': param},
                outputs={'Out': param},
176
                attrs={
177
                    'ring_id': ring_id,
178
                    'root': 0,
179
                    self.op_role_key: OpRole.Forward
180
                })
181 182 183 184 185 186 187 188

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Forward})
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

213 214
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
215
        self.mode = "grad_allreduce"
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
237
                        self.op_role_key: OpRole.Backward
238 239 240 241
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
242 243
        ring_id = -1
        grad = None
244 245 246 247 248 249 250 251 252
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

253
                offset = idx
254
                for i in range(0, len(op_role_var), 2):
255 256
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
257 258 259
                    if param.is_distributed:
                        continue

260 261 262 263 264 265 266 267 268 269 270 271 272
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
273
                    block._insert_op(
274 275 276 277
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
278
                        attrs={
279 280
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
281
                        })
282 283 284

        if grad is None:
            return
285 286 287

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
288 289 290 291 292 293 294 295 296 297
                for ring_id in range(self.nrings):
                    block._insert_op(
                        idx + ring_id,
                        type='c_sync_comm_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            self.op_role_key: OpRole.Backward
                        })
298 299 300 301 302 303 304
                break


class LocalSGD(Collective):
    '''
    '''

305 306
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
307
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
308
        self.mode = "local_sgd"
309 310 311 312 313

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
314
        non_dist_params = []
315
        for param in block.iter_parameters():
316 317
            if not param.is_distributed:
                non_dist_params.append(param)
318

319
        for param in non_dist_params:
320 321 322 323 324 325 326 327 328
            snapshot = block.create_var(
                name=self.snapshot_name(param.name),
                shape=param.shape,
                persistable=True,
                stop_gradient=True)
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
329
                attrs={self.op_role_key: OpRole.Forward})
330 331 332 333 334 335 336

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
337
        ring_id = -1
338 339 340
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
341 342 343
                if param.is_distributed:
                    continue

344 345 346 347
                snapshot = block.create_var(
                    name=self.snapshot_name(param.name),
                    shape=param.shape,
                    persistable=True,
348 349
                    stop_gradient=True,
                    dtype=param.dtype)
350 351 352 353 354 355 356

                block._insert_op(
                    idx + 1,
                    type='elementwise_sub',
                    inputs={'X': [snapshot],
                            'Y': [param]},
                    outputs={'Out': [param]},
357
                    attrs={self.op_role_key: OpRole.Optimize})
358 359 360 361 362
                block._insert_op(
                    idx + 2,
                    type='c_sync_calc_stream',
                    inputs={'X': param},
                    outputs={'Out': param},
363 364
                    attrs={self.op_role_key: OpRole.Optimize})
                ring_id = (ring_id + 1) % self.nrings
365 366
                block._insert_op(
                    idx + 3,
367
                    type='c_allreduce_sum',
368 369 370
                    inputs={'X': [param]},
                    outputs={'Out': [param]},
                    attrs={
371 372
                        'ring_id': ring_id,
                        self.op_role_key: OpRole.Optimize
373 374 375 376
                    })

                ordered_param_snapshot.append((param, snapshot))

377 378 379 380 381 382 383
        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       self.op_role_key: OpRole.Optimize})
384 385 386 387 388 389 390 391 392 393

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
            block.append_op(
                type='scale',
                inputs={'X': [param]},
                outputs={'Out': [param]},
                attrs={
                    'scale': 1.0 / self.nranks,
394
                    self.op_role_key: OpRole.Optimize
395 396 397 398 399 400
                })
            block.append_op(
                type='elementwise_sub',
                inputs={'X': [snapshot],
                        'Y': [param]},
                outputs={'Out': [param]},
401
                attrs={self.op_role_key: OpRole.Optimize})
402 403 404 405
            block.append_op(
                type='assign',
                inputs={'X': [param]},
                outputs={'Out': [snapshot]},
406
                attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
407 408 409 410 411 412 413


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
414
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
415 416 417 418 419
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443


class MultiThread(GradAllReduce):
    '''
    '''

    def __init__(self, nrings=1):
        GradAllReduce.__init__(self, nrings)
        self.mode = "box"

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
                self._init_communicator(
                    self.startup_program, self.current_endpoint, self.endpoints,
                    self.rank, ring_id, self.wait_port, True)
        else:
            print("begin to _transpile_startup_program for single-node")
            block = self.startup_program.global_block()
            block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})