functors.h 6.3 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
18 19
#include "paddle/fluid/operators/math.h"

20 21 22 23 24 25 26 27 28 29 30
namespace pten {
namespace funcs {

// // MulFunctor
// // NOTE(chenfeiyu): IT IS NOLONGER USED, use pten::funcs::MultiplyFunctor
// instead
// template <typename T>
// struct MulFunctor {
//   // out = x * y;
//   inline HOSTDEVICE T operator()(T x, T y) { return x * y; }
// };
31 32 33 34 35 36 37

template <typename T>
struct MulGradFunctor {
  inline HOSTDEVICE T Dx(T x, T y) { return y; }
  inline HOSTDEVICE T Dy(T x, T y) { return x; }
};

38 39 40 41 42 43 44
// // AddFunctor
// // NOTE(chenfeiyu): IT IS NOLONGER USED, use pten::funcs::AddFunctor instead
// template <typename T>
// struct AddFunctor {
//   // out = x + y;
//   inline HOSTDEVICE T operator()(T x, T y) { return x + y; }
// };
C
chengduo 已提交
45

46 47 48 49 50
template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? b : a; }
};

C
chengduo 已提交
51 52
template <typename T>
struct AddGradFunctor {
53 54
  inline HOSTDEVICE T Dx(T x, T y) { return static_cast<T>(1.); }
  inline HOSTDEVICE T Dy(T x, T y) { return static_cast<T>(1.); }
C
chengduo 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
};

template <typename T>
struct ScaleFunctor {
  explicit ScaleFunctor(const T coeff) : coeff_(coeff) {}

  inline HOSTDEVICE T operator()(T ele) { return ele * coeff_; }

 private:
  T coeff_;
};

template <typename T>
struct ScaleGradFunctor {
  explicit ScaleGradFunctor(T coeff) : coeff_(coeff) {}

C
chengduo 已提交
71 72 73
  inline HOSTDEVICE T UseX(T x) { return coeff_; }
  inline HOSTDEVICE T UseOut(T out) { return coeff_; }
  inline HOSTDEVICE T UseXAndOut(T x, T out) { return coeff_; }
C
chengduo 已提交
74 75 76 77 78 79 80

 private:
  T coeff_;
};

template <typename T>
struct ReluFunctor {
81 82 83
  inline HOSTDEVICE T operator()(T x) {
    return x * (x > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0));
  }
C
chengduo 已提交
84 85 86 87
};

template <typename T>
struct ReluGradFunctor {
88 89 90 91 92 93 94 95 96
  inline HOSTDEVICE T UseX(T x) {
    return x > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
  inline HOSTDEVICE T UseOut(T out) {
    return out > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return out > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
C
chengduo 已提交
97 98
};

99 100 101 102 103 104
template <typename T>
struct TanhFunctor {
  const T kMin = static_cast<T>(-40);
  const T kMax = static_cast<T>(13);
  inline HOSTDEVICE T operator()(T x) {
    // y = 2 / (1 + e^-2x) - 1
105
    T t0 = static_cast<T>(2) * x;
106
    T t1 = (t0 < kMin) ? kMin : ((t0 > kMax) ? kMax : t0);
107 108
    return static_cast<T>(2) /
               (static_cast<T>(1) + paddle::operators::real_exp(-t1)) -
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
           static_cast<T>(1);
  }
};

template <typename T>
struct TanhGradFunctor {
  inline HOSTDEVICE T UseX(T x) { return static_cast<T>(1) - x * x; }
  inline HOSTDEVICE T UseOut(T out) { return static_cast<T>(1) - out * out; }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return static_cast<T>(1) - out * out;
  }
};

template <typename T>
struct SigmoidFunctor {
  const T kMin = static_cast<T>(-40);
  const T kMax = static_cast<T>(13);
  inline HOSTDEVICE T operator()(T x) {
    // y = 1 / (1 + e^-x)
    T tmp = (x < kMin) ? kMin : ((x > kMax) ? kMax : x);
129 130
    return static_cast<T>(1) /
           (static_cast<T>(1) + paddle::operators::real_exp(-tmp));
131 132 133 134 135 136 137 138 139 140 141 142
  }
};

template <typename T>
struct SigmoidGradFunctor {
  inline HOSTDEVICE T UseX(T x) { return x * (static_cast<T>(1) - x); }
  inline HOSTDEVICE T UseOut(T out) { return out * (static_cast<T>(1) - out); }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return out * (static_cast<T>(1) - out);
  }
};

143 144
template <typename T>
struct GeluFunctor {
145
  using MT = typename paddle::operators::details::MPTypeTrait<T>::Type;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  inline HOSTDEVICE T operator()(T x) {
    // this function is tanh approximation of gelu
    // actual gelu is:
    // x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
    MT mx = static_cast<MT>(x);
    MT out = mx * static_cast<MT>(0.5) *
             (static_cast<MT>(1.0) +
              tanh(static_cast<MT>(0.79788456) * mx *
                   (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx)));
    return static_cast<T>(out);
  }
};

template <typename T>
struct GeluGradFunctor {
161
  using MT = typename paddle::operators::details::MPTypeTrait<T>::Type;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  inline HOSTDEVICE T UseX(T x) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
  inline HOSTDEVICE T UseOut(T x) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
};

200 201
}  // namespace funcs
}  // namespace pten