op_test.py 18.9 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4
import itertools
Q
Qiao Longfei 已提交
5
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
6
import collections
Q
Qiao Longfei 已提交
7 8 9 10
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
Q
qijun 已提交
34
                for sub_in_name, _ in sub_in:
Y
Yu Yang 已提交
35
                    __create_var__(in_name, sub_in_name)
36
            else:
Y
Yu Yang 已提交
37
                __create_var__(in_name, in_name)
38

Q
qijun 已提交
39
    for out_name, out_dup in Operator.get_op_outputs(op_type):
40 41 42
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
43 44
                sub_out = outputs[out_name]
                for sub_out_name, _ in sub_out:
Y
Yu Yang 已提交
45
                    __create_var__(out_name, sub_out_name)
46
            else:
Y
Yu Yang 已提交
47
                __create_var__(out_name, out_name)
48

Q
qijun 已提交
49
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
50 51
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
52

53 54 55 56
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
57
    def __set_input__(var_name, var):
58 59 60 61 62 63 64 65 66 67 68
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
69

Q
qijun 已提交
70
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
71 72 73
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
74
                for sub_in_name, sub_in_val in sub_in:
Y
Yu Yang 已提交
75
                    __set_input__(sub_in_name, sub_in_val)
76
            else:
Y
Yu Yang 已提交
77
                __set_input__(in_name, inputs[in_name])
78 79 80 81 82 83


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
84
                         output_names,
85 86
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
87
    # FIXME: change this method by compile time concepts
88 89 90 91 92 93
    set_input(scope, op, inputs, core.CPUPlace())

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
94
        sum = []
Y
Yancey 已提交
95
        for output_name in output_names:
D
dzhwinter 已提交
96
            op.run(scope, core.CPUPlace())
Y
Yu Yang 已提交
97 98 99
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
100 101 102

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

126 127 128 129
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
Q
qijun 已提交
130
            set_input(scope, op, inputs, core.CPUPlace())
131 132

        # get one input element throw it's index i.
133
        origin = __get_elem__(tensor_to_check, i)
134 135
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
136
        __set_elem__(tensor_to_check, i, x_pos)
137 138 139
        y_pos = get_output()

        if in_place:
Q
qijun 已提交
140
            set_input(scope, op, inputs, core.CPUPlace())
141 142

        x_neg = origin - delta
143
        __set_elem__(tensor_to_check, i, x_neg)
144 145
        y_neg = get_output()

146
        __set_elem__(tensor_to_check, i, origin)
147 148 149 150 151
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
179
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


194
class OpTest(unittest.TestCase):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
210 211 212 213 214 215
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
216 217 218 219 220
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
221 222 223 224 225 226 227 228 229 230 231 232
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

233
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
234 235 236 237 238 239 240 241 242 243 244 245
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
246 247 248
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
262 263 264 265
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
266 267

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
268 269 270
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
271 272 273 274 275 276 277 278 279 280
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

281 282
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
283 284 285 286
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for sub_out_name, expect in sub_out:
Y
Yang Yang(Tony) 已提交
287
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
288 289
                    actual = outs[idx]
                    actual_t = np.array(actual)
290 291
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
292 293
                    self.assertTrue(
                        np.allclose(
294
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
295 296
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
297 298
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
299 300
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
301
            else:
Y
Yang Yang(Tony) 已提交
302
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
303 304
                actual = outs[idx]
                actual_t = np.array(actual)
305
                expect = self.outputs[out_name]
306
                expect_t = expect[0] if isinstance(expect, tuple) else expect
307 308
                self.assertTrue(
                    np.allclose(
309
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
310
                    "Output (" + out_name + ") has diff at " + str(place))
311
                if isinstance(expect, tuple):
Q
QI JUN 已提交
312
                    self.assertListEqual(actual.lod(), expect[1],
313 314
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
315

316
    def check_output(self, atol=1e-5):
Q
qijun 已提交
317
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
318
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
319
            places.append(core.CUDAPlace(0))
Q
qijun 已提交
320
        for place in places:
321
            self.check_output_with_place(place, atol)
Q
qijun 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
335
                return ("%s Variable %s max gradient diff %f over limit %f, "
336
                        "the first error element is %d, %f, %f") % (
337
                            msg_prefix, name, max_diff, max_relative_error,
338
                            offset, a.flatten()[offset], b.flatten()[offset])
339 340 341 342 343

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
344
                   output_names,
345
                   no_grad_set=None,
346
                   numeric_grad_delta=0.005,
347
                   in_place=False,
Q
Qiao Longfei 已提交
348 349
                   max_relative_error=0.005,
                   user_defined_grads=None):
350
        self.scope = core.Scope()
Q
qijun 已提交
351
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
352
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
353
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
354
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
355
                            op_attrs)
Y
Yu Yang 已提交
356

357 358 359
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
360 361 362
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
363
        numeric_grads = user_defined_grads or [
364 365 366 367 368
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
369
                output_names,
370
                delta=numeric_grad_delta,
371 372
                in_place=in_place) for input_to_check in inputs_to_check
        ]
Q
qijun 已提交
373
        cpu_place = core.CPUPlace()
Y
Yu Yang 已提交
374 375
        cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place,
                                                output_names, no_grad_set)
376

Y
Yu Yang 已提交
377 378
        self.__assert_is_close(numeric_grads, cpu_analytic_grads,
                               inputs_to_check, max_relative_error,
Q
qijun 已提交
379 380 381
                               "Gradient Check On %s" % str(cpu_place))

        if core.is_compile_gpu() and self.op.support_gpu():
D
dzhwinter 已提交
382
            gpu_place = core.CUDAPlace(0)
Y
Yu Yang 已提交
383 384
            gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place,
                                                    output_names, no_grad_set)
385

Q
qijun 已提交
386
            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
Y
Yu Yang 已提交
387
                                   inputs_to_check, max_relative_error,
Q
qijun 已提交
388 389
                                   "Gradient Check On %s" % str(gpu_place))

Y
Yu Yang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
404 405 406 407 408
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
449
        op = block.append_op(
Y
Yu Yang 已提交
450 451 452 453 454
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
455 456 457 458
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

Y
Yu Yang 已提交
459 460 461
        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
F
fengjiayi 已提交
462
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
463
            op = block.append_op(
Y
Yu Yang 已提交
464
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
465 466
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
467 468 469
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
470
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
471
                op = block.append_op(
Y
Yu Yang 已提交
472 473 474
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
475 476
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
477 478
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
479
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
480
            op_sum = block.append_op(
Y
Yu Yang 已提交
481
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
482 483
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
484

F
fengjiayi 已提交
485
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
486
            op_loss = block.append_op(
Y
Yu Yang 已提交
487 488 489 490
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
491 492
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
493 494 495 496 497 498 499 500 501 502 503

        param_grad_list = append_backward_ops(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
504 505 506
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))