conv_transpose_cudnn_op.cu.cc 11.3 KB
Newer Older
Z
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
C
chengduoZH 已提交
18
#include "paddle/operators/conv_transpose_op.h"
Z
zchen0211 已提交
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

Z
zchen0211 已提交
31
static constexpr size_t kConvCudnnWorkspaceLimitBytes = 1024 * 1024 * 1024;
Z
zchen0211 已提交
32 33 34 35 36 37

template <typename T>
class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
38
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
39 40 41 42 43 44
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
45
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
46 47 48 49 50 51 52 53 54 55 56
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
C
chengduoZH 已提交
57 58 59 60 61 62 63
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
Z
zchen0211 已提交
64

C
chengduoZH 已提交
65
    // (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
66 67
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
C
chengduoZH 已提交
68
    // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
69 70
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
C
chengduoZH 已提交
71
    // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
Z
zchen0211 已提交
72 73 74 75 76 77 78 79
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()));
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
Z
zchen0211 已提交
80
    size_t workspace_size_limit = kConvCudnnWorkspaceLimitBytes;
Z
zchen0211 已提交
81 82 83 84
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
Z
zchen0211 已提交
85
    cudnnConvolutionBwdDataAlgo_t algo;
Q
QI JUN 已提交
86 87
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
88 89 90 91 92 93 94 95 96 97 98 99
    // Get the algorithm
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
        handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
        // dxDesc: Handle to the previously initialized output tensor
        // descriptor.
        cudnn_output_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

    // get workspace size able to allocate
    PADDLE_ENFORCE(
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
100
            cudnn_output_desc, algo, &workspace_size_in_bytes));
Z
zchen0211 已提交
101 102

    // Allocate on GPU memory
D
dzhwinter 已提交
103
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
Z
zchen0211 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);

    // ------------------- cudnn conv transpose forward ---------------------
    T alpha = 1.0f, beta = 0.0f;
    PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
        handle, &alpha, cudnn_filter_desc, filter_data, cudnn_input_desc,
        input_data, cudnn_conv_desc, algo, cudnn_workspace,
        workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));

    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
123
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
124 125 126 127 128 129 130 131 132 133 134
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
135
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
136 137 138 139 140
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
Z
zchen0211 已提交
141
    ScopedTensorDescriptor output_desc;
Z
zchen0211 已提交
142 143 144 145
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
146
    // Input: (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
147
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
Z
zchen0211 已提交
148
        layout, framework::vectorize2int(input->dims()));
C
chengduoZH 已提交
149
    // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
150 151
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output_grad->dims()));
C
chengduoZH 已提交
152
    // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
Z
zchen0211 已提交
153
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
Z
zchen0211 已提交
154
        layout, framework::vectorize2int(filter->dims()));
Z
zchen0211 已提交
155 156 157 158 159

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn backward algorithm ---------------------
Z
zchen0211 已提交
160
    cudnnConvolutionFwdAlgo_t data_algo;
Z
zchen0211 已提交
161
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
Z
zchen0211 已提交
162 163
    size_t bwd_filter_ws_size, fwd_ws_size;
    size_t workspace_size_in_bytes = 0;
Z
zchen0211 已提交
164
    size_t workspace_size_limit = kConvCudnnWorkspaceLimitBytes;
Z
zchen0211 已提交
165 166 167 168
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
169 170
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
171
    if (input_grad) {
Z
zchen0211 已提交
172 173 174 175 176 177 178 179 180
      // choose backward algorithm for data
      PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &data_algo));
      PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, data_algo, &fwd_ws_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
Z
zchen0211 已提交
181 182 183
    }

    if (filter_grad) {
Z
zchen0211 已提交
184
      // choose backward algorithm for filter
Z
zchen0211 已提交
185 186
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
Z
zchen0211 已提交
187
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
188 189 190 191
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

Z
zchen0211 已提交
192
      // get workspace for backwards filter algorithm
Z
zchen0211 已提交
193 194
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
Z
zchen0211 已提交
195 196 197 198
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
      workspace_size_in_bytes =
          std::max(workspace_size_in_bytes, bwd_filter_ws_size);
Z
zchen0211 已提交
199
    }
Z
zchen0211 已提交
200

Z
zchen0211 已提交
201 202 203
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
204
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
Z
zchen0211 已提交
205 206 207 208 209 210
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
211
      // Because beta is zero, it is unnecessary to reset input_grad.
Z
zchen0211 已提交
212 213 214 215 216
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_output_desc, output_grad_data,
          cudnn_filter_desc, filter_data, cudnn_conv_desc, data_algo,
          cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
          input_grad_data));
Z
zchen0211 已提交
217
    }
Z
zchen0211 已提交
218

Z
zchen0211 已提交
219 220 221
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
222
      // Because beta is zero, it is unnecessary to reset filter_grad.
Z
zchen0211 已提交
223 224 225 226 227
      // Gradient with respect to the filter
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
          handle, &alpha, cudnn_output_desc, output_grad_data, cudnn_input_desc,
          input_data, cudnn_conv_desc, filter_algo, cudnn_workspace,
          workspace_size_in_bytes, &beta, cudnn_filter_desc, filter_grad_data));
Z
zchen0211 已提交
228 229 230 231 232 233 234 235 236 237 238
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Q
QI JUN 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251
REGISTER_OP_CUDA_KERNEL(conv2d_transpose_cudnn,
                        ops::CudnnConvTransposeOpKernel<float>,
                        ops::CudnnConvTransposeOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(conv2d_transpose_cudnn_grad,
                        ops::CudnnConvTransposeGradOpKernel<float>,
                        ops::CudnnConvTransposeGradOpKernel<double>);

REGISTER_OP_CUDA_KERNEL(conv3d_transpose_cudnn,
                        ops::CudnnConvTransposeOpKernel<float>,
                        ops::CudnnConvTransposeOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(conv3d_transpose_cudnn_grad,
                        ops::CudnnConvTransposeGradOpKernel<float>,
                        ops::CudnnConvTransposeGradOpKernel<double>);