inference_api.cc 38.5 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16
#include <pybind11/numpy.h>
F
flame 已提交
17 18
#include <pybind11/stl.h>
#include <cstring>
19
#include <functional>
F
flame 已提交
20
#include <iostream>
21
#include <iterator>
22
#include <map>
23
#include <memory>
F
flame 已提交
24
#include <string>
25
#include <type_traits>
26
#include <unordered_set>
27
#include <utility>
F
flame 已提交
28 29
#include <vector>
#include "paddle/fluid/inference/api/analysis_predictor.h"
30
#include "paddle/fluid/inference/api/helper.h"
31
#include "paddle/fluid/inference/api/paddle_infer_contrib.h"
F
flame 已提交
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
33
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
34
#include "paddle/fluid/inference/utils/io_utils.h"
F
flame 已提交
35

36 37 38 39
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

F
flame 已提交
40 41
namespace py = pybind11;

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
constexpr int NPY_UINT16_ = 4;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle_infer::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static constexpr auto name = _("float16");
};

}  // namespace detail
}  // namespace pybind11

F
flame 已提交
72 73
namespace paddle {
namespace pybind {
74 75 76
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
77
using paddle::PaddleBuf;
78
using paddle::PaddleDType;
79
using paddle::PaddleDataLayout;
80
using paddle::PaddlePassBuilder;
F
flame 已提交
81 82
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
83 84 85
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
86

87 88
namespace {
void BindPaddleDType(py::module *m);
89
void BindPaddleDataLayout(py::module *m);
90 91 92 93 94 95
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
96
void BindLiteNNAdapterConfig(py::module *m);
97 98
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
99 100
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
101 102 103
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
104

105
#ifdef PADDLE_WITH_MKLDNN
106
void BindMkldnnQuantizerConfig(py::module *m);
107
#endif
108 109

template <typename T>
110 111
PaddleBuf PaddleBufCreate(
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
112
  PaddleBuf buf(data.size() * sizeof(T));
113
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
114 115 116 117 118
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
119 120 121
void PaddleBufReset(
    PaddleBuf &buf,                                                    // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {  // NOLINT
122
  buf.Resize(data.size() * sizeof(T));
123
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
124 125 126 127 128
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
129 130
    py::array_t<T, py::array::c_style | py::array::forcecast> data,
    const std::string name = "",
131 132 133 134 135
    const std::vector<std::vector<size_t>> &lod = {}, bool copy = true) {
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
136
    std::copy_n(static_cast<const T *>(data.data()), data.size(),
137 138 139 140 141 142
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

143
  tensor.dtype = inference::PaddleTensorGetDType<T>();
144 145 146 147 148 149 150 151
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

152
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
153
  py::dtype dt;
154
  switch (dtype) {
155 156 157 158 159 160 161 162 163
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
W
Wilber 已提交
164 165 166
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
167 168 169
    case PaddleDType::FLOAT16:
      dt = py::dtype::of<paddle_infer::float16>();
      break;
170
    default:
171
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
172
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
173
          "FLOAT32."));
174
  }
175 176 177 178 179 180 181 182 183 184

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
185 186 187
void ZeroCopyTensorCreate(
    ZeroCopyTensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
188 189 190 191 192 193
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

S
Steffy-zxf 已提交
194 195 196 197 198 199 200 201 202 203 204 205
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void ZeroCopyStringTensorCreate(ZeroCopyTensor &tensor,  // NOLINT
                                const paddle_infer::Strings *data) {
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.copy_strings_from_cpu(data);
}

W
Wilber 已提交
206
template <typename T>
207 208 209
void PaddleInferTensorCreate(
    paddle_infer::Tensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
W
Wilber 已提交
210 211 212 213 214 215
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
paddle_infer::PlaceType ToPaddleInferPlace(
    phi::AllocationType allocation_type) {
  if (allocation_type == phi::AllocationType::CPU) {
    return paddle_infer::PlaceType::kCPU;
  } else if (allocation_type == phi::AllocationType::GPU) {
    return paddle_infer::PlaceType::kGPU;
  } else {
    return paddle_infer::PlaceType::kCPU;
  }
}

void PaddleInferShareExternalData(paddle_infer::Tensor &tensor,  // NOLINT
                                  framework::Tensor input_tensor) {
  std::vector<int> shape;
  for (int i = 0; i < input_tensor.dims().size(); ++i) {
    shape.push_back(input_tensor.dims()[i]);
  }
  if (input_tensor.dtype() == phi::DataType::FLOAT32) {
    tensor.ShareExternalData(
        static_cast<float *>(input_tensor.data()), shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::FLOAT16) {
    tensor.ShareExternalData(
        static_cast<paddle::platform::float16 *>(input_tensor.data()), shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  }
}

S
Steffy-zxf 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void PaddleInferStringTensorCreate(paddle_infer::Tensor &tensor,  // NOLINT
                                   const paddle_infer::Strings *data) {
  VLOG(3) << "Create PaddleInferTensor, dtype = Strings ";
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.CopyStringsFromCpu(data);
}

257 258 259 260 261 262 263 264 265 266 267 268 269
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
    default:
270 271 272
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
293 294 295 296
    case PaddleDType::FLOAT16:
      tensor.copy_to_cpu<paddle::platform::float16>(
          static_cast<paddle::platform::float16 *>(array.mutable_data()));
      break;
W
Wilber 已提交
297 298 299
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
300 301 302
    case PaddleDType::INT8:
      tensor.copy_to_cpu<int8_t>(static_cast<int8_t *>(array.mutable_data()));
      break;
303
    default:
304
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
305
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
306
          "FLOAT32."));
307 308
  }
  return array;
309
}
310

W
Wilber 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
327 328 329 330
    case PaddleDType::FLOAT16:
      tensor.CopyToCpu<paddle::platform::float16>(
          static_cast<paddle::platform::float16 *>(array.mutable_data()));
      break;
331 332 333 334 335 336
    case PaddleDType::UINT8:
      tensor.CopyToCpu(static_cast<uint8_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT8:
      tensor.CopyToCpu(static_cast<int8_t *>(array.mutable_data()));
      break;
W
Wilber 已提交
337 338 339 340 341 342 343 344
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
  }
  return array;
}

345 346 347 348 349
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
350

351
void CopyPaddleInferTensor(paddle_infer::Tensor &dst,  // NOLINT
352 353 354 355
                           const paddle_infer::Tensor &src) {
  return paddle_infer::contrib::TensorUtils::CopyTensor(&dst, src);
}

356
}  // namespace
357

F
flame 已提交
358 359
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
360
  BindPaddleDataLayout(m);
F
flame 已提交
361 362 363 364 365 366
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
367
  BindLiteNNAdapterConfig(m);
F
flame 已提交
368 369
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
370
  BindPaddleInferPredictor(m);
371
  BindZeroCopyTensor(m);
W
Wilber 已提交
372
  BindPaddleInferTensor(m);
373
  BindPaddlePassBuilder(m);
W
Wilber 已提交
374
  BindPredictorPool(m);
375 376 377
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
378
  m->def("create_paddle_predictor",
W
Wilber 已提交
379
         &paddle::CreatePaddlePredictor<AnalysisConfig>, py::arg("config"));
F
flame 已提交
380
  m->def("create_paddle_predictor",
W
Wilber 已提交
381
         &paddle::CreatePaddlePredictor<NativeConfig>, py::arg("config"));
W
Wilber 已提交
382 383 384 385 386
  m->def("create_predictor", [](const paddle_infer::Config &config)
                                 -> std::unique_ptr<paddle_infer::Predictor> {
                                   auto pred =
                                       std::unique_ptr<paddle_infer::Predictor>(
                                           new paddle_infer::Predictor(config));
T
Tomasz Socha 已提交
387
                                   return pred;
W
Wilber 已提交
388
                                 });
389
  m->def("copy_tensor", &CopyPaddleInferTensor);
F
flame 已提交
390
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
391
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
392
  m->def("get_version", &paddle_infer::GetVersion);
393 394
  m->def("get_trt_compile_version", &paddle_infer::GetTrtCompileVersion);
  m->def("get_trt_runtime_version", &paddle_infer::GetTrtRuntimeVersion);
W
Wilber 已提交
395
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
F
flame 已提交
396 397
}

398
namespace {
F
flame 已提交
399 400 401
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
      .value("FLOAT32", PaddleDType::FLOAT32)
402 403
      .value("INT64", PaddleDType::INT64)
      .value("INT32", PaddleDType::INT32);
F
flame 已提交
404 405
}

406 407 408 409 410 411 412 413
void BindPaddleDataLayout(py::module *m) {
  py::enum_<PaddleDataLayout>(*m, "PaddleDataLayout")
      .value("UNK", PaddleDataLayout::kUNK)
      .value("Any", PaddleDataLayout::kAny)
      .value("NHWC", PaddleDataLayout::kNHWC)
      .value("NCHW", PaddleDataLayout::kNCHW);
}

F
flame 已提交
414 415 416 417 418 419
void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
420
        return buf;
F
flame 已提交
421
      }))
422 423 424
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
425 426 427 428 429 430
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
431 432 433
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
434
      .def("empty", &PaddleBuf::empty)
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
451 452 453
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
454 455 456
             }
             return l;
           })
F
flame 已提交
457 458 459 460 461 462 463 464 465 466
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
467 468 469 470
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
471 472 473 474 475 476 477
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
478 479 480 481 482 483 484 485 486 487 488 489 490
      .def(py::init(&PaddleTensorCreate<int32_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<int64_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<float>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
491 492 493 494 495 496 497 498 499 500 501
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
502
      .value("GPU", PaddlePlace::kGPU)
W
Wilber 已提交
503 504
      .value("XPU", PaddlePlace::kXPU)
      .value("NPU", PaddlePlace::kNPU);
F
flame 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
518 519
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
520
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
521 522
      .def("clone", &PaddlePredictor::Clone)
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
523 524 525 526 527 528 529 530 531 532

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
533
      .def_readwrite("use_xpu", &NativeConfig::use_xpu)
W
Wilber 已提交
534
      .def_readwrite("use_npu", &NativeConfig::use_npu)
F
flame 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
      .def("clone", &NativePaddlePredictor::Clone)
      .def("scope", &NativePaddlePredictor::scope,
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
568 569 570 571 572
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
573
      .value("Half", AnalysisConfig::Precision::kHalf)
574 575
      .export_values();

576 577
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
578 579
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
580
      .def("summary", &AnalysisConfig::Summary)
F
flame 已提交
581 582 583 584 585 586 587 588 589 590 591 592
      .def("set_model", (void (AnalysisConfig::*)(const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_model", (void (AnalysisConfig::*)(const std::string &,
                                                  const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
      .def("enable_use_gpu", &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"), py::arg("device_id") = 0)
593 594 595
      .def("exp_enable_use_gpu_fp16", &AnalysisConfig::Exp_EnableUseGpuFp16,
           py::arg("gpu_fp16_disabled_op_types") =
               std::unordered_set<std::string>({}))
596
      .def("enable_xpu", &AnalysisConfig::EnableXpu,
W
Wilber 已提交
597 598 599 600
           py::arg("l3_workspace_size") = 16 * 1024 * 1024,
           py::arg("locked") = false, py::arg("autotune") = true,
           py::arg("autotune_file") = "", py::arg("precision") = "int16",
           py::arg("adaptive_seqlen") = false)
601 602
      .def("set_xpu_device_id", &AnalysisConfig::SetXpuDeviceId,
           py::arg("device_id") = 0)
W
Wilber 已提交
603
      .def("enable_npu", &AnalysisConfig::EnableNpu, py::arg("device_id") = 0)
604 605 606 607 608 609 610 611
      .def("enable_ipu", &AnalysisConfig::EnableIpu,
           py::arg("ipu_device_num") = 1, py::arg("ipu_micro_batch_size") = 1,
           py::arg("ipu_enable_pipelining") = false,
           py::arg("ipu_batches_per_step") = 1)
      .def("set_ipu_config", &AnalysisConfig::SetIpuConfig,
           py::arg("ipu_enable_fp16") = false, py::arg("ipu_replica_num") = 1,
           py::arg("ipu_available_memory_proportion") = 1.0,
           py::arg("ipu_enable_half_partial") = false)
F
flame 已提交
612
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
613 614 615 616
      .def("enable_onnxruntime", &AnalysisConfig::EnableONNXRuntime)
      .def("disable_onnxruntime", &AnalysisConfig::DisableONNXRuntime)
      .def("onnxruntime_enabled", &AnalysisConfig::use_onnxruntime)
      .def("enable_ort_optimization", &AnalysisConfig::EnableORTOptimization)
F
flame 已提交
617
      .def("use_gpu", &AnalysisConfig::use_gpu)
618
      .def("use_xpu", &AnalysisConfig::use_xpu)
W
Wilber 已提交
619
      .def("use_npu", &AnalysisConfig::use_npu)
F
flame 已提交
620
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
621
      .def("xpu_device_id", &AnalysisConfig::xpu_device_id)
W
Wilber 已提交
622
      .def("npu_device_id", &AnalysisConfig::npu_device_id)
F
flame 已提交
623 624 625 626 627 628 629
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
      .def("switch_ir_optim", &AnalysisConfig::SwitchIrOptim,
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
630 631
      .def("enable_memory_optim", &AnalysisConfig::EnableMemoryOptim,
           py::arg("x") = true)
632
      .def("enable_profile", &AnalysisConfig::EnableProfile)
633
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
634
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
635
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
F
flame 已提交
636 637 638 639 640 641 642 643 644
      .def("switch_use_feed_fetch_ops", &AnalysisConfig::SwitchUseFeedFetchOps,
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
           &AnalysisConfig::SwitchSpecifyInputNames, py::arg("x") = true)
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
      .def("enable_tensorrt_engine", &AnalysisConfig::EnableTensorRtEngine,
           py::arg("workspace_size") = 1 << 20, py::arg("max_batch_size") = 1,
645
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
646
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
647
           py::arg("use_static") = false, py::arg("use_calib_mode") = true)
648
      .def("tensorrt_precision_mode", &AnalysisConfig::tensorrt_precision_mode)
649 650
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
651 652 653 654 655
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
656 657
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
658 659
      .def("tensorrt_dynamic_shape_enabled",
           &AnalysisConfig::tensorrt_dynamic_shape_enabled)
660 661
      .def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS)
      .def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled)
662 663 664 665 666 667 668 669 670 671
      .def("collect_shape_range_info", &AnalysisConfig::CollectShapeRangeInfo)
      .def("shape_range_info_path", &AnalysisConfig::shape_range_info_path)
      .def("shape_range_info_collected",
           &AnalysisConfig::shape_range_info_collected)
      .def("enable_tuned_tensorrt_dynamic_shape",
           &AnalysisConfig::EnableTunedTensorRtDynamicShape)
      .def("tuned_tensorrt_dynamic_shape",
           &AnalysisConfig::tuned_tensorrt_dynamic_shape)
      .def("trt_allow_build_at_runtime",
           &AnalysisConfig::trt_allow_build_at_runtime)
672
      .def("exp_disable_tensorrt_ops", &AnalysisConfig::Exp_DisableTensorRtOPs)
673 674 675
      .def("enable_tensorrt_dla", &AnalysisConfig::EnableTensorRtDLA,
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
676 677 678 679
      .def("enable_tensorrt_inspector",
           &AnalysisConfig::EnableTensorRtInspector)
      .def("tensorrt_inspector_enabled",
           &AnalysisConfig::tensorrt_inspector_enabled)
F
flame 已提交
680
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
D
denglin-github 已提交
681 682
      .def("enable_dlnne", &AnalysisConfig::EnableDlnne,
           py::arg("min_subgraph_size") = 3)
683 684
      .def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
685
           py::arg("zero_copy") = false,
686 687 688
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
F
flame 已提交
689 690 691 692 693 694 695 696 697
      .def("switch_ir_debug", &AnalysisConfig::SwitchIrDebug,
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
698
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
699
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
700 701 702
#ifdef PADDLE_WITH_MKLDNN
      .def("quantizer_config", &AnalysisConfig::mkldnn_quantizer_config,
           py::return_value_policy::reference)
703 704
      .def("set_mkldnn_cache_capacity", &AnalysisConfig::SetMkldnnCacheCapacity,
           py::arg("capacity") = 0)
705
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
B
baoachun 已提交
706 707 708 709
      .def("enable_mkldnn_int8", &AnalysisConfig::EnableMkldnnInt8,
           py::arg("mkldnn_int8_enabled_op_types") =
               std::unordered_set<std::string>({}))
      .def("mkldnn_int8_enabled", &AnalysisConfig::mkldnn_int8_enabled)
710
#endif
F
flame 已提交
711 712 713
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
714 715 716 717
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
W
Wilber 已提交
718 719 720 721
      .def("pass_builder",
           [](AnalysisConfig &self) {
             return dynamic_cast<PaddlePassBuilder *>(self.pass_builder());
           },
722
           py::return_value_policy::reference)
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
      .def("nnadapter", &AnalysisConfig::NNAdapter)
      .def("set_dist_config", &AnalysisConfig::SetDistConfig)
      .def("dist_config", &AnalysisConfig::dist_config);

  py::class_<DistConfig>(*m, "DistConfig")
      .def(py::init<>())
      .def("set_carrier_id", &DistConfig::SetCarrierId)
      .def("set_comm_init_config", &DistConfig::SetCommInitConfig)
      .def("set_endpoints", &DistConfig::SetEndpoints)
      .def("set_ranks", &DistConfig::SetRanks)
      .def("enable_dist_model", &DistConfig::EnableDistModel)
      .def("carrier_id", &DistConfig::carrier_id)
      .def("current_endpoint", &DistConfig::current_endpoint)
      .def("trainer_endpoints", &DistConfig::trainer_endpoints)
      .def("nranks", &DistConfig::nranks)
      .def("rank", &DistConfig::rank)
      .def("comm_init_config", &DistConfig::comm_init_config)
      .def("use_dist_model", &DistConfig::use_dist_model);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

void BindLiteNNAdapterConfig(py::module *m) {
  py::class_<LiteNNAdapterConfig> lite_nnadapter_config(*m,
                                                        "LiteNNAdapterConfig");

  lite_nnadapter_config
      .def("set_device_names", &LiteNNAdapterConfig::SetDeviceNames)
      .def("set_context_properties", &LiteNNAdapterConfig::SetContextProperties)
      .def("set_model_cache_dir", &LiteNNAdapterConfig::SetModelCacheDir)
      .def("set_model_cache_buffers",
           &LiteNNAdapterConfig::SetModelCacheBuffers)
      .def("set_subgraph_partition_config_path",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath)
      .def("set_subgraph_partition_config_buffer",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer)
      .def("enable", &LiteNNAdapterConfig::Enable)
      .def("disable", &LiteNNAdapterConfig::Disable);
F
flame 已提交
759 760
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
776
      .def("set_enabled_op_types", &MkldnnQuantizerConfig::SetEnabledOpTypes);
777 778 779
}
#endif

F
flame 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
793 794 795
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
796
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
797 798
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
799
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
800 801 802 803 804 805 806
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
      .def("analysis_argument", &AnalysisPredictor::analysis_argument,
           py::return_value_policy::reference)
F
flame 已提交
807 808
      .def("clone", &AnalysisPredictor::Clone)
      .def("scope", &AnalysisPredictor::scope,
809
           py::return_value_policy::reference)
810 811 812 813
      .def("program", &AnalysisPredictor::program,
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
814 815
      .def("SaveOptimModel", &AnalysisPredictor::SaveOptimModel,
           py::arg("dir"));
F
flame 已提交
816
}
817

W
Wilber 已提交
818 819 820 821 822 823 824
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
W
Wilber 已提交
825 826 827 828 829 830 831
      .def("run",
           [](paddle_infer::Predictor &self) {
#ifdef PADDLE_WITH_ASCEND_CL
             pybind11::gil_scoped_release release;
#endif
             self.Run();
           })
W
Wilber 已提交
832
      .def("clone", &paddle_infer::Predictor::Clone)
833
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
834 835 836 837
      .def("clear_intermediate_tensor",
           &paddle_infer::Predictor::ClearIntermediateTensor);
}

838 839
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
S
Steffy-zxf 已提交
840 841 842 843
      .def("reshape", py::overload_cast<const std::vector<int> &>(
                          &ZeroCopyTensor::Reshape))
      .def("reshape", py::overload_cast<const std::size_t &>(
                          &paddle_infer::Tensor::ReshapeStrings))
844 845 846
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
847
      .def("copy_from_cpu", &ZeroCopyTensorCreate<paddle_infer::float16>)
S
Steffy-zxf 已提交
848
      .def("copy_from_cpu", &ZeroCopyStringTensorCreate)
849 850 851 852 853 854 855
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
856 857
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
S
Steffy-zxf 已提交
858 859 860 861
      .def("reshape", py::overload_cast<const std::vector<int> &>(
                          &paddle_infer::Tensor::Reshape))
      .def("reshape", py::overload_cast<const std::size_t &>(
                          &paddle_infer::Tensor::ReshapeStrings))
862 863 864 865 866
      .def("copy_from_cpu_bind", &PaddleInferTensorCreate<int32_t>)
      .def("copy_from_cpu_bind", &PaddleInferTensorCreate<int64_t>)
      .def("copy_from_cpu_bind", &PaddleInferTensorCreate<float>)
      .def("copy_from_cpu_bind",
           &PaddleInferTensorCreate<paddle_infer::float16>)
S
Steffy-zxf 已提交
867
      .def("copy_from_cpu_bind", &PaddleInferStringTensorCreate)
868
      .def("share_external_data_bind", &PaddleInferShareExternalData)
W
Wilber 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
      .def("retrive", &paddle_infer::services::PredictorPool::Retrive,
           py::return_value_policy::reference);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
      .def("all_passes", &PaddlePassBuilder::AllPasses,
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
911
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
912 913 914 915 916 917 918
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
919 920
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
921 922 923 924 925 926

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
927 928
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
929
}
930
}  // namespace
F
flame 已提交
931 932
}  // namespace pybind
}  // namespace paddle