role_maker.py 42.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

T
tangwei12 已提交
16
from __future__ import print_function
17
from multiprocessing import Process, Manager
18
import paddle.fluid as fluid
X
xujiaqi01 已提交
19
import os
20
import time
21

T
tangwei12 已提交
22
__all__ = [
23
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
24
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
25 26
]

27

T
tangwei12 已提交
28 29
class Role:
    WORKER = 1
30
    SERVER = 2
T
Thunderbrook 已提交
31
    XPU = 3
32

D
dongdaxiang 已提交
33

X
xujiaqi01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class MockBarrier(object):
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


D
dongdaxiang 已提交
69
class RoleMakerBase(object):
70 71 72 73 74 75 76
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
77
    def __init__(self):
T
tangwei12 已提交
78 79
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
80
        self._role_is_generated = False
T
tangwei12 已提交
81 82
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
83

T
tangwei12 已提交
84
    def is_worker(self):
85 86 87
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
88 89
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
90
    def is_server(self):
91 92 93
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
94 95
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
96
    def is_first_worker(self):
97
        """
T
tangwei12 已提交
98 99 100 101
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
102
        """
T
tangwei12 已提交
103
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
104

105 106 107 108 109 110 111 112 113
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

114 115 116
    def role_id(self):
        return self.worker_index() if self.is_worker() else self.server_index()

T
tangwei12 已提交
117
    def worker_index(self):
118
        """
T
tangwei12 已提交
119 120 121 122
        Get current worker id.

        Returns:
            int: node id
123
        """
T
tangwei12 已提交
124
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
125

T
tangwei12 已提交
126
    def server_index(self):
127
        """
T
tangwei12 已提交
128 129 130 131
        Get current server id.

        Returns:
            int: node id
132
        """
T
tangwei12 已提交
133
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
134

T
tangwei12 已提交
135
    def get_trainer_endpoints(self):
136
        """
T
tangwei12 已提交
137
        return trainer endpoints
138
        """
T
tangwei12 已提交
139 140 141 142 143 144 145
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
146

T
tangwei12 已提交
147 148 149 150 151
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
189 190

class MPIRoleMaker(RoleMakerBase):
191 192 193 194 195
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
196
    def __init__(self):
X
xujiaqi01 已提交
197
        """Init."""
X
xujiaqi01 已提交
198
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
199 200
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
201 202
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
203
        self._ips = None
T
tangwei12 已提交
204
        self._ip = None
D
dongdaxiang 已提交
205

206
    def _get_rank(self):
X
xujiaqi01 已提交
207
        """Return rank."""
D
dongdaxiang 已提交
208 209
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
210

211
    def _get_size(self):
X
xujiaqi01 已提交
212
        """Return size."""
D
dongdaxiang 已提交
213 214
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
215

216
    def _all_gather(self, obj):
217 218 219
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
220
        self._barrier_all()
D
dongdaxiang 已提交
221
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
222

X
xjqbest 已提交
223 224 225 226
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
227
        if self.is_worker():
D
dongdaxiang 已提交
228 229
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
230 231
        return None

232
    def _barrier_all(self):
233 234 235
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
236
        self._comm.barrier()
D
dongdaxiang 已提交
237

T
tangwei12 已提交
238 239 240 241
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
242
        self.MPI.Finalize()
T
tangwei12 已提交
243

244
    def _get_ips(self):
245 246 247
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
248 249
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
250
        return self._ips
D
dongdaxiang 已提交
251

T
tangwei12 已提交
252
    def get_local_ip(self):
X
xujiaqi01 已提交
253
        """Return get local ip."""
T
tangwei12 已提交
254 255 256 257 258 259 260 261 262
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
263 264 265


class MPISymetricRoleMaker(MPIRoleMaker):
266 267 268 269 270 271
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
272
    def __init__(self):
X
xujiaqi01 已提交
273
        """Init."""
D
dongdaxiang 已提交
274
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
275 276
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
277
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
278

279
    def _check_role_generation(self):
X
xujiaqi01 已提交
280
        """Check whether role has been generated."""
D
dongdaxiang 已提交
281
        if not self._role_is_generated:
T
tangwei12 已提交
282
            raise NameError("generate_role() should be called first")
283 284
        return True

X
xujiaqi01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
335
    def is_first_worker(self):
336 337 338 339
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
340
            return self.is_worker() and 0 == self.worker_index()
341
        return False
D
dongdaxiang 已提交
342

G
guru4elephant 已提交
343
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
344 345 346 347 348 349
        """
        get pserver endpoints
        
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

363 364 365
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
366
    def is_worker(self):
367 368 369 370
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
371
            return self._node_type == 1
372
        return False
D
dongdaxiang 已提交
373

T
tangwei12 已提交
374
    def is_server(self):
375 376 377 378
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
379
            return self._node_type == 0
380
        return False
D
dongdaxiang 已提交
381

382
    def _worker_num(self):
383 384 385 386
        """
        return the current number of worker
        """
        if self._check_role_generation():
387
            return self._get_size() / self._proc_per_node
388
        return 0
D
dongdaxiang 已提交
389

390
    def _server_num(self):
391 392 393 394
        """
        return the current number of server
        """
        if self._check_role_generation():
G
guru4elephant 已提交
395 396 397 398
            return self._get_size() / self._proc_per_node
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
399

T
tangwei12 已提交
400
    def worker_index(self):
401 402 403 404
        """
        return the index of worker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
405
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
406 407 408
        else:
            self.generate_role()
            return self._get_size() / 2
D
dongdaxiang 已提交
409

T
tangwei12 已提交
410
    def server_index(self):
411 412 413 414
        """
        return the index of server
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
415
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
416 417 418
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
419

X
xujiaqi01 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

442
    def _barrier_worker(self):
443 444 445 446
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
447
            if self.is_worker():
D
dongdaxiang 已提交
448
                self._node_type_comm.barrier()
G
guru4elephant 已提交
449 450
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
451

452
    def _barrier_server(self):
453 454 455 456
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
457
            if self.is_server():
D
dongdaxiang 已提交
458
                self._node_type_comm.barrier()
G
guru4elephant 已提交
459 460
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
461

T
tangwei12 已提交
462
    def generate_role(self):
463 464 465
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
466
        if not self._role_is_generated:
467
            # TODO(guru4elephant): only allow to be called once
468 469
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
470

D
dongdaxiang 已提交
471 472
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
473
            else:
D
dongdaxiang 已提交
474 475 476
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
477 478
        else:
            raise Exception("You should check role generation first")
479 480


481
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
482 483 484 485 486
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

487
    def __init__(self, is_collective=False):
488
        super(PaddleCloudRoleMaker, self).__init__()
489
        self._role_is_generated = False
490
        self._is_collective = is_collective
491 492

    def generate_role(self):
X
xujiaqi01 已提交
493
        """Generate role."""
494
        if not self._role_is_generated:
495
            if not self._is_collective:
T
tangwei12 已提交
496
                try:
C
Chengmo 已提交
497 498 499 500
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
518 519 520
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
521 522 523 524 525 526 527 528 529 530 531 532
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
533
            else:
534 535 536 537 538 539
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
540 541 542 543
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

544 545
            self._role_is_generated = True

546 547 548 549 550
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

551 552 553
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
554 555 556
        return self._role == Role.WORKER

    def is_server(self):
557 558
        if not self._role_is_generated:
            self.generate_role()
559 560 561
        return self._role == Role.SERVER

    def is_first_worker(self):
562 563
        if not self._role_is_generated:
            self.generate_role()
564 565 566
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
567 568
        if not self._role_is_generated:
            self.generate_role()
569 570 571
        return self._current_id

    def server_index(self):
572 573
        if not self._role_is_generated:
            self.generate_role()
574 575 576
        return self._current_id

    def worker_num(self):
577 578
        if not self._role_is_generated:
            self.generate_role()
579
        return self._trainers_num
580 581


X
xujiaqi01 已提交
582 583 584
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
585 586
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
587 588 589 590 591 592 593 594 595 596 597 598
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
        super(RoleMakerBase, self).__init__()
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
        ip_port = kwargs.get("http_ip_port", "")
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        self._iface = self.__get_default_iface()
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
X
xujiaqi01 已提交
629 630 631 632
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
                self._is_barrier_all = int(os.environ[
                    "PADDLE_IS_BARRIER_ALL_ROLE"])
X
xujiaqi01 已提交
633 634 635
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
                    self._http_server = Process(
                        target=self.__start_kv_server,
                        args=(self._http_server_d, size_d))
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
651 652
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
X
xujiaqi01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
                    gloo.set_timeout_seconds(self._init_timeout_seconds,
                                             self._run_timeout_seconds)
                    if len(self._http_ip_port) != 0:
                        gloo.set_http_store(self._http_ip_port[0],
                                            int(self._http_ip_port[1]),
                                            "trainer")
                    else:
                        gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                            self._hdfs_name, self._hdfs_ugi)
                    gloo.init()
                    self._node_type_comm = gloo
670
                else:
X
xujiaqi01 已提交
671
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
685
                gloo = fluid.core.Gloo()
686 687 688 689 690 691 692 693 694 695 696 697 698
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
699 700
                self._node_type_comm = gloo

701
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
702
            all_list = worker_endpoints + eplist
703 704 705 706 707 708 709 710 711 712 713 714 715
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
716 717 718 719 720 721 722 723
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
724 725 726 727 728
            if self._http_server is not None:
                # set running status to False
                self._http_server_d["running"] = False
                # wait until child process exits
                self._http_server.join()
X
xujiaqi01 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

981 982 983 984 985 986 987 988 989 990
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
        while http_server_d.get("running",
                                False) and not http_server.shoud_stop():
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
991

T
Thunderbrook 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
class HeterRoleMaker(GeneralRoleMaker):
    """
    This role maker is for general use, you can set os.environ to customize:
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            xpu_endpoints = os.environ["PADDLE_XPU_ENDPOINTS"].split(",")
            xpu_num = len(xpu_endpoints)
            if training_role not in ["TRAINER", "PSERVER", "XPU"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or XPU")
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(worker_endpoints),
                          self._hdfs_path.rstrip("/") + "/trainer",
                          self._hdfs_name, self._hdfs_ugi, self._iface,
                          self._prefix)
                self._node_type_comm = gloo
            elif training_role == "XPU":
                role = Role.XPU
                current_id = int(os.environ["PADDLE_XPU_ID"])
                self._node_type = 2
                self._cur_endpoint = xpu_endpoints[current_id]
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(xpu_endpoints),
                          self._hdfs_path.rstrip("/") + "/xpu", self._hdfs_name,
                          self._hdfs_ugi, self._iface, self._prefix)
                self._node_type_comm = gloo
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(eplist),
                          self._hdfs_path.rstrip("/") + "/pserver",
                          self._hdfs_name, self._hdfs_ugi, self._iface,
                          self._prefix)
                self._node_type_comm = gloo

            if training_role == "TRAINER" or training_role == "XPU":
                gloo = fluid.core.Gloo()
                heter_list = worker_endpoints + xpu_endpoints
                gloo.init(
                    heter_list.index(self._cur_endpoint),
                    len(heter_list),
                    self._hdfs_path.rstrip("/") + "/heter", self._hdfs_name,
                    self._hdfs_ugi, self._iface, self._prefix)
                self._heter_comm = gloo

            gloo = fluid.core.Gloo()
            all_list = worker_endpoints + eplist + xpu_endpoints
            gloo.init(
                all_list.index(self._cur_endpoint),
                len(all_list),
                self._hdfs_path.rstrip("/") + "/all", self._hdfs_name,
                self._hdfs_ugi, self._iface, self._prefix)

            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._xpu_endpoints = xpu_endpoints
            self._role_is_generated = True

    def is_xpu(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU

    def is_first_xpu(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU and self._current_id == 0

    def _barrier_xpu(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu():
            self._node_type_comm.barrier()

    def _barrier_heter(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu() or self.is_worker:
            self._heter_comm.barrier()

    def xpu_num(self):
        """
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._xpu_endpoints)


1133
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1134 1135 1136 1137 1138 1139
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

1140 1141
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
1142 1143 1144
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
1145 1146
        super(UserDefinedRoleMaker, self).__init__()

1147 1148 1149 1150 1151 1152 1153
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1154
        else:
1155 1156 1157 1158 1159 1160
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1161

T
tangwei12 已提交
1162
        if role != Role.WORKER and role != Role.SERVER:
1163 1164 1165 1166
            raise TypeError("role must be as Role")
        else:
            self._role = role

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1180 1181 1182
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1183 1184
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1185 1186
            self._worker_num = worker_num

1187 1188 1189
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1190 1191 1192 1193 1194
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1195

T
tangwei12 已提交
1196 1197
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1198

T
tangwei12 已提交
1199 1200
    def worker_index(self):
        return self._current_id
1201

T
tangwei12 已提交
1202 1203
    def server_index(self):
        return self._current_id
1204 1205 1206

    def worker_num(self):
        return self._worker_num
1207 1208 1209


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1210 1211 1212 1213 1214
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1215 1216 1217
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1233 1234 1235 1236
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1237 1238 1239 1240 1241 1242
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1243 1244 1245 1246
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1247 1248 1249
    def generate_role(self):
        self._role_is_generated = True

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num