eigen_test.cc 3.3 KB
Newer Older
Y
Yi Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include "paddle/framework/eigen.h"
#include <gtest/gtest.h>

Y
Yi Wang 已提交
17 18
namespace paddle {
namespace framework {
Y
Yi Wang 已提交
19

Y
Yi Wang 已提交
20 21
TEST(EigenDim, From) {
  EigenDim<3>::Type ed = EigenDim<3>::From(make_ddim({1, 2, 3}));
Q
qijun 已提交
22 23 24
  ASSERT_EQ(1, ed[0]);
  ASSERT_EQ(2, ed[1]);
  ASSERT_EQ(3, ed[2]);
Y
Yi Wang 已提交
25
}
Y
Yi Wang 已提交
26

Y
Yi Wang 已提交
27
TEST(Eigen, Tensor) {
Y
Yi Wang 已提交
28
  Tensor t;
Y
Yi Wang 已提交
29
  float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
Y
Yi Wang 已提交
30 31 32 33
  for (int i = 0; i < 1 * 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

Y
Yi Wang 已提交
34
  EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
Q
qijun 已提交
35

Q
qijun 已提交
36 37 38
  ASSERT_EQ(1, et.dimension(0));
  ASSERT_EQ(2, et.dimension(1));
  ASSERT_EQ(3, et.dimension(2));
Q
qijun 已提交
39 40 41 42

  for (int i = 0; i < 1; i++) {
    for (int j = 0; j < 2; j++) {
      for (int k = 0; k < 3; k++) {
Q
qijun 已提交
43
        ASSERT_NEAR((i * 2 + j) * 3 + k, et(i, j, k), 1e-6f);
Q
qijun 已提交
44 45 46 47 48
      }
    }
  }
}

L
liaogang 已提交
49 50 51 52 53 54 55 56 57 58 59
TEST(Eigen, ScalarFrom) {
  Tensor t;
  int* p = t.mutable_data<int>(make_ddim({1}), platform::CPUPlace());
  *p = static_cast<int>(100);

  EigenScalar<int>::Type es = EigenScalar<int>::From(t);

  ASSERT_EQ(0, es.dimension(0));
  ASSERT_EQ(100, es(0));
}

Q
qijun 已提交
60 61 62 63 64 65 66 67 68
TEST(Eigen, VectorFrom) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({6}), platform::CPUPlace());
  for (int i = 0; i < 6; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenVector<float>::Type ev = EigenVector<float>::From(t);

Q
qijun 已提交
69
  ASSERT_EQ(6, ev.dimension(0));
Q
qijun 已提交
70 71

  for (int i = 0; i < 6; i++) {
Q
qijun 已提交
72
    ASSERT_NEAR(i, ev(i), 1e-6f);
Q
qijun 已提交
73 74 75 76 77 78 79 80 81 82 83 84
  }
}

TEST(Eigen, VectorFlatten) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
  for (int i = 0; i < 1 * 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenVector<float>::Type ev = EigenVector<float>::Flatten(t);

Q
qijun 已提交
85
  ASSERT_EQ(1 * 2 * 3, ev.dimension(0));
Q
qijun 已提交
86

Q
qijun 已提交
87
  for (int i = 0; i < 1 * 2 * 3; i++) {
Q
qijun 已提交
88
    ASSERT_NEAR(i, ev(i), 1e-6f);
Q
qijun 已提交
89
  }
Y
Yi Wang 已提交
90 91
}

Q
qijun 已提交
92 93 94 95 96 97 98 99
TEST(Eigen, Matrix) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({2, 3}), platform::CPUPlace());
  for (int i = 0; i < 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenMatrix<float>::Type em = EigenMatrix<float>::From(t);
Y
Yi Wang 已提交
100

Q
qijun 已提交
101 102
  ASSERT_EQ(2, em.dimension(0));
  ASSERT_EQ(3, em.dimension(1));
Q
qijun 已提交
103 104 105

  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 3; j++) {
Q
qijun 已提交
106
      ASSERT_NEAR(i * 3 + j, em(i, j), 1e-6f);
Q
qijun 已提交
107 108 109
    }
  }
}
Y
Yi Wang 已提交
110

F
WIP  
fengjiayi 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
TEST(Eigen, MatrixReshape) {
  Tensor t;
  float* p =
      t.mutable_data<float>(make_ddim({2, 3, 6, 4}), platform::CPUPlace());
  for (int i = 0; i < 2 * 3 * 6 * 4; ++i) {
    p[i] = static_cast<float>(i);
  }

  EigenMatrix<float>::Type em = EigenMatrix<float>::Reshape(t, 2);

  ASSERT_EQ(2 * 3, em.dimension(0));
  ASSERT_EQ(6 * 4, em.dimension(1));

  for (int i = 0; i < 2 * 3; i++) {
    for (int j = 0; j < 6 * 4; j++) {
      ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f);
    }
  }
}

Q
qijun 已提交
131
}  // namespace framework
Y
Yi Wang 已提交
132
}  // namespace paddle