logic.py 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19 20
from ..fluid.framework import in_dygraph_mode
from paddle.common_ops_import import *
Z
zhulei 已提交
21
from ..framework import VarBase as Tensor
22

23
# TODO: define logic functions of a tensor  
24 25 26 27 28 29
from ..fluid.layers import is_empty  #DEFINE_ALIAS
from ..fluid.layers import logical_and  #DEFINE_ALIAS
from ..fluid.layers import logical_not  #DEFINE_ALIAS
from ..fluid.layers import logical_or  #DEFINE_ALIAS
from ..fluid.layers import logical_xor  #DEFINE_ALIAS

30 31
__all__ = [
    'equal',
W
wawltor 已提交
32
    'equal_all',
33 34 35 36 37 38 39 40 41 42
    'greater_equal',
    'greater_than',
    'is_empty',
    'less_equal',
    'less_than',
    'logical_and',
    'logical_not',
    'logical_or',
    'logical_xor',
    'not_equal',
Z
Zhen Wang 已提交
43
    'allclose',
Z
zhulei 已提交
44
    'is_tensor'
45
    #       'isnan'
46 47 48
]


W
wawltor 已提交
49
def equal_all(x, y, name=None):
50 51 52
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
53
    **NOTICE**: The output of this OP has no gradient.
54 55

    Args:
W
wawltor 已提交
56 57 58 59
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
60 61

    Returns:
W
wawltor 已提交
62
        Tensor: output Tensor, data type is bool, value is [False] or [True].
63 64 65 66 67

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
68

69 70 71
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
72
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
73
          print(result1) # result1 = [True ]
W
wawltor 已提交
74
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
75
          print(result2) # result2 = [False ]
76
    """
W
wawltor 已提交
77 78

    helper = LayerHelper("equal_all", **locals())
79 80
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
81 82
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
83
    return out
Z
Zhen Wang 已提交
84 85 86


@templatedoc()
87
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
88 89 90 91
    """
    ${comment}

    Args:
92 93
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
94 95
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
96 97 98
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
99 100

    Returns:
101 102 103 104 105 106 107 108
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
109 110 111 112 113 114

    Examples:
        .. code-block:: python

          import paddle

115 116
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
117
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
118
                                  equal_nan=False, name="ignore_nan")
119 120 121
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
122
                                      equal_nan=True, name="equal_nan")
123 124 125
          np_result2 = result2.numpy()
          # [False]

126 127
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
128 129 130 131 132 133 134 135
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
136 137
    """

138
    if in_dygraph_mode():
139 140 141
        return core.ops.allclose(x, y, 'rtol',
                                 str(rtol), 'atol',
                                 str(atol), 'equal_nan', equal_nan)
142 143 144

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
145 146 147 148 149 150 151
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

152
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
153
    outputs = {'Out': out}
154
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
155 156 157 158
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
159 160


W
wawltor 已提交
161 162
@templatedoc()
def equal(x, y, name=None):
163
    """
S
swtkiwi 已提交
164

165
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
166

W
wawltor 已提交
167
    **NOTICE**: The output of this OP has no gradient.
168 169

    Args:
W
wawltor 已提交
170 171
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
172 173 174 175
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
176
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
177 178 179 180 181
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
182 183
          import paddle

184 185
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
186
          result1 = paddle.equal(x, y)
N
Noel 已提交
187
          print(result1)  # result1 = [True False False]
188
    """
189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if in_dygraph_mode():
        return core.ops.equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
203
    return out
204

W
wawltor 已提交
205 206 207 208 209

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
210

W
wawltor 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
223

W
wawltor 已提交
224 225
            import paddle

226 227
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
228
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
229
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
230
    """
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    if in_dygraph_mode():
        return core.ops.greater_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
247 248 249 250 251 252 253
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
254

W
wawltor 已提交
255 256 257 258 259 260 261 262 263 264 265 266
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
267

W
wawltor 已提交
268 269
            import paddle

270 271
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
272
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
273
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
274
    """
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    if in_dygraph_mode():
        return core.ops.greater_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
291 292 293 294 295 296 297
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
298

W
wawltor 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
312

W
wawltor 已提交
313 314
            import paddle

315 316
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
317
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
318
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
319
    """
320 321 322 323 324 325 326 327 328 329 330 331 332 333
    if in_dygraph_mode():
        return core.ops.less_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
334 335 336 337 338 339 340
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
341

W
wawltor 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
355

W
wawltor 已提交
356 357
            import paddle

358 359
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
360
            result1 = paddle.less_than(x, y)
N
Noel 已提交
361
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
362
    """
363 364 365 366 367 368 369 370 371 372 373 374 375 376
    if in_dygraph_mode():
        return core.ops.less_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
377 378 379 380 381 382 383
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
384
    
W
wawltor 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
398

W
wawltor 已提交
399 400
            import paddle

401 402
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
403
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
404
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
405
    """
406 407 408 409 410 411 412 413 414 415 416 417 418 419
    if in_dygraph_mode():
        return core.ops.not_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
420
    return out
Z
zhulei 已提交
421 422 423 424 425


def is_tensor(x):
    """

C
chentianyu03 已提交
426
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
427 428 429 430 431

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
432
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
C
chentianyu03 已提交
448
    return isinstance(x, Tensor)