pool_op.cc 15.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

43 44 45 46 47 48 49
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83 84
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86 87 88
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90 91
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94 95 96 97
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout_ = framework::DataLayout::kMKLDNN;
99
  }
100
#endif
101 102 103 104 105 106

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

107 108 109 110 111 112 113
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

114 115
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
116
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
117 118 119
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
120
#ifdef PADDLE_WITH_CUDA
121 122
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
123 124
  }
#endif
125 126 127 128
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
129
    layout_ = framework::DataLayout::kMKLDNN;
130
  }
131
#endif
132

K
Kexin Zhao 已提交
133 134 135 136 137 138 139
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
140 141
}

Y
Yu Yang 已提交
142
void Pool2dOpMaker::Make() {
143 144
  AddInput(
      "X",
C
chengduoZH 已提交
145
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
146 147 148
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
149
  AddOutput("Out",
K
kexinzhao 已提交
150 151 152 153
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
154
            "and W is the width of the feature.");
155

C
chengduoZH 已提交
156
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
157 158
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
159
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
160
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
161 162
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
163
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
164 165
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
166
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
167
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
168
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
169
                "If global_pooling = true, ksize and paddings will be ignored.")
170
      .SetDefault(false);
K
kexinzhao 已提交
171 172 173
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
174 175
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
176 177 178
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
179
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
180
      "operator."
C
chengduoZH 已提交
181
      "If global_pooling = true, paddings and ksize will be ignored.")
182
      .SetDefault({0, 0});
183 184 185 186 187 188
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
189 190 191 192
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
193 194 195
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
196 197
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
198
      .SetDefault(false);
199 200 201
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
202 203 204 205 206 207 208 209
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
210 211

  AddComment(R"DOC(
C
chengduoZH 已提交
212
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
213
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
214 215
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
216 217
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
218 219
The input(X) size and output(Out) size may be different.

220
Example:
F
fengjiayi 已提交
221

C
chengduoZH 已提交
222
  Input:
F
fengjiayi 已提交
223

K
kexinzhao 已提交
224
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
225

C
chengduoZH 已提交
226
  Output:
F
fengjiayi 已提交
227

K
kexinzhao 已提交
228
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
229

230 231
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
232
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
233 234
       $$
       $$
F
fengjiayi 已提交
235
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
236
       $$
237 238
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
239
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
240 241
       $$
       $$
F
fengjiayi 已提交
242
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
243
       $$
K
kexinzhao 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  For exclusive = true:
       $$
       hstart = i * strides[0] - paddings[0]
       hend = hstart + ksize[0]
       wstart = j * strides[1] - paddings[1]
       wend = wstart + ksize[1]
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
  For exclusive = false:
       $$
       hstart = max(0, i * strides[0] - paddings[0])
       hend = min(H, hstart + ksize[0])
       wstart = max(0, j * strides[1] - paddings[1])
       wend = min(W, wstart + ksize[1])
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$

262
)DOC");
263 264
}

Y
Yu Yang 已提交
265
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
266 267 268 269 270 271
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
272
  AddOutput("Out",
C
chengduoZH 已提交
273
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
274 275 276
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
277
            "width of the feature, respectively.");
278

C
chengduoZH 已提交
279
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
280
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
281
                       "and \"avg\" for average-pooling.")
282
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
283 284 285 286
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
287
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
288 289
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
290
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
291 292 293 294
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
295
      .SetDefault(false);
K
kexinzhao 已提交
296 297 298 299
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
300 301
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
302 303
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
304
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
305
      "width) of pooling operator. "
C
chengduoZH 已提交
306
      "If global_pooling = true, ksize and paddings will be ignored.")
307 308
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
309 310 311 312 313 314
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
315

316 317 318 319
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
320 321 322
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
323 324
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
325
      .SetDefault(false);
326 327 328
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
329 330 331 332 333 334 335 336 337
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

338
  AddComment(R"DOC(
K
kexinzhao 已提交
339 340
Pool3d Operator.

C
chengduoZH 已提交
341
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
342
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
343 344
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
345 346
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
347
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
348 349 350

Example:
  Input:
K
kexinzhao 已提交
351
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
352
  Output:
K
kexinzhao 已提交
353
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
354
  For ceil_mode = false:
C
chengduoZH 已提交
355 356 357 358 359
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
360 361 362 363 364 365
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
366

367
)DOC");
368
}
369 370 371 372 373
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
374
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
375 376
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
377

Q
QI JUN 已提交
378 379 380 381 382
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
383
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
384

Y
Yang Yang 已提交
385
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
386 387
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
388

Q
QI JUN 已提交
389 390 391 392 393 394
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);