ContextProjectionOp.cpp 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {
X
xutianbing 已提交
20 21 22 23
/**
 * Context Projection Forward with CPU Matrix Device.
 *
 */
24
template <>
25 26 27
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
                                               const CpuMatrix& input_mat,
                                               const CpuMatrix& weight_mat,
28
                                               const CpuIVector& seq_vec,
29 30
                                               size_t context_length,
                                               int context_start,
31
                                               size_t begin_pad) {
32 33 34 35 36 37 38 39 40 41 42
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
43 44 45 46 47
        MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
48 49 50 51 52 53 54
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
55 56 57 58 59 60 61
        MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat)
                  .subMatrix(begin_pad + context_start + j - pad_size,
                             pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
62 63 64 65 66
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
67 68 69 70
      MatrixPtr src =
          const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * input_mat.getWidth());
71 72 73 74 75
    }
  }
}

/**
X
xutianbing 已提交
76
 * Paddle Function for Context Projection Forward.
X
xutianbing 已提交
77
 * Calculate the output layer value sequence after context projection.
X
xutianbing 已提交
78
 *
X
xutianbing 已提交
79
 * What is Context Projection for a sequence?
X
xutianbing 已提交
80 81 82
 * For example, assumed input (x) has 4 words and the dimension of each word
 * representation is 2. If we use zero to pad instead of learned weight to pad,
 * and the context_lenth is 3, the output (y) is:
83
 *
X
xutianbing 已提交
84 85 86 87 88 89 90 91 92 93 94
 * @code
 *  x = [a1, a2;
 *       b1, b2;
 *       c1, c2;
 *       d1, d2]
 *  y = [0,  0,  a1, a2, b1, b2;
 *       a1, a2, b1, b2, c1, c2;
 *       b1, b2, c1, c2, d1, d2;
 *       c1, c2, d1, d2, 0,  0]
 * @endcode
 *
X
xutianbing 已提交
95 96 97 98 99
 * \param outputs[0].matrix   output layer value, n * (d * l)
 * \param outputs[0].vector   start position sequence, n * 1
 * \param inputs[0].matrix    input layer value, n * d
 * \param inputs[0].vector    start position sequence, n * 1
 * \param inputs[1].matrix    input layer weight, pad * d
100 101 102 103 104 105 106 107 108 109
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

110
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
111
    CHECK(1 == inputs.size() || 2 == inputs.size());
H
hedaoyuan 已提交
112
    CHECK_EQ((size_t)1, outputs.size());
X
xutianbing 已提交
113 114
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
115
    const auto val_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
X
xutianbing 已提交
116
    auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
117

X
xutianbing 已提交
118
    CHECK(out_seq.data() && val_seqs.data() &&
119
          val_seqs.getSequenceIds().data());
X
xutianbing 已提交
120
    CHECK_EQ(out_seq.shape().ndims(), (size_t)2);
121 122
    CHECK_EQ(val_seqs.shape().ndims(), (size_t)2);
    CHECK_EQ(val_seqs.getSequenceIds().shape().ndims(), (size_t)1);
X
xutianbing 已提交
123 124
    if (2 == inputs.size()) {
      CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
125
    }
126
    /// dim of output = dim of input * context_length
X
xutianbing 已提交
127
    CHECK_EQ(out_seq.shape()[1], val_seqs.shape()[1] * context_length_);
128
    /// input and output has the same batch_size
X
xutianbing 已提交
129
    CHECK_EQ(val_seqs.shape()[0], out_seq.shape()[0]);
130
    /// dim of input == dim of weight
X
xutianbing 已提交
131 132
    if (2 == inputs.size()) {
      CHECK_EQ(val_seqs.shape()[1], inputs[1].shape()[1]);
133
    }
134

X
xutianbing 已提交
135 136
    CHECK_EQ(out_seq.getArgType(), ADD_TO);
    auto out_mat = out_seq.matrix<Device>();
137
    const auto in_mat = val_seqs.matrix<Device>();
138
    const auto w_mat =
X
xutianbing 已提交
139 140 141
        (2 == inputs.size())
            ? inputs[1].matrix<Device>()
            : typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
142
    const auto seq_vec = val_seqs.getSequenceIds().vector<int, Device>();
143 144 145
    ContextProjectionForward<Device>(out_mat,
                                     in_mat,
                                     w_mat,
146
                                     seq_vec,
147 148
                                     context_length_,
                                     context_start_,
149
                                     begin_pad_);
150 151 152 153 154 155 156 157
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

X
xutianbing 已提交
158 159 160 161
/**
 * Context Projection Backward with CPU Matrix Device.
 *
 */
162
template <>
163
void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
164 165
                                                CpuMatrix& in_grad_mat,
                                                CpuMatrix& w_grad_mat,
166
                                                const CpuIVector& seq_vec,
167 168 169
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
170 171
                                                bool is_padding,
                                                size_t total_pad) {
172 173
  size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
                                 : w_grad_mat ? w_grad_mat.getWidth() : 0;
174 175 176 177 178 179 180 181 182 183 184 185
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
186 187
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i], pad_size);
188
          MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
189 190 191 192 193 194 195 196 197
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
198 199
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i + 1] - pad_size, pad_size);
200
          MatrixPtr sub = w_grad_mat.subMatrix(
201 202 203 204 205 206 207 208
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
209
      MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
210 211
      MatrixPtr dst = const_cast<CpuMatrix&>(out_grad_mat)
                          .subMatrix(dst_begin, dst_end - dst_begin);
212 213 214 215 216 217
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
X
xutianbing 已提交
218 219 220
 * Context Projection Backward Function.
 * Update the weight gradient and input layer gradient with backprop
 *
X
xutianbing 已提交
221 222 223 224 225
 * \param inputs[0].matrix          output layer grad, n * (d * l)
 * \param inputs[0].vector          start position sequence, n * 1
 * \param outputs[0].matrix         input layer grad, n * d
 * \param outputs[0].vector         start position sequence, n * 1
 * \param outputs[1]                weight grad, pad * d
226 227 228 229 230 231 232 233 234
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
235
    total_pad_ = config.get<size_t>("total_pad");
236 237
  }

238
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
X
xutianbing 已提交
239
    CHECK_EQ((size_t)1, inputs.size());
240
    CHECK_EQ((size_t)2, outputs.size());
X
xutianbing 已提交
241 242 243 244 245 246 247 248 249
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
    auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);
    CHECK(in_seq.data() && in_seq.getSequenceIds().data());
    CHECK_EQ(in_seq.shape().ndims(), (size_t)2);
    CHECK_EQ(in_seq.getSequenceIds().shape().ndims(), (size_t)1);
    CHECK_EQ(out_seq.shape().ndims(), (size_t)2);
    CHECK_EQ(out_seq.getSequenceIds().shape().ndims(), (size_t)1);
250
    CHECK_EQ(outputs[1].shape().ndims(), (size_t)2);
251

252
    /// dim of input grad == dim of weight
X
xutianbing 已提交
253
    CHECK_EQ(out_seq.shape()[1], outputs[1].shape()[1]);
254
    /// input and output grad has the same batch_size
X
xutianbing 已提交
255 256 257 258
    CHECK_EQ(out_seq.shape()[0], in_seq.shape()[0]);
    /// dim of output grad = dim of input grad * context_length
    CHECK_EQ(in_seq.shape()[1], out_seq.shape()[1] * context_length_);
    CHECK_EQ(out_seq.getArgType(), ADD_TO);
259
    CHECK_EQ(outputs[1].getArgType(), ADD_TO);
260

X
xutianbing 已提交
261 262
    const auto seq_vec = in_seq.getSequenceIds().vector<int, Device>();
    const auto out_grad_mat = in_seq.matrix<Device>();
263
    auto in_grad_mat =
X
xutianbing 已提交
264 265
        !out_seq.data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                        : out_seq.matrix<Device>();
266
    auto w_grad_mat = !outputs[1].data()
267
                          ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
268
                          : outputs[1].matrix<Device>();
269 270 271
    ContextProjectionBackward<Device>(out_grad_mat,
                                      in_grad_mat,
                                      w_grad_mat,
272
                                      seq_vec,
273 274 275
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
276 277
                                      is_padding_,
                                      total_pad_);
278 279 280 281 282 283 284
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
285
  size_t total_pad_;
286 287
};

288
/**
X
xutianbing 已提交
289 290 291 292 293 294 295 296 297
 * Context Projection Backward Data Function
 * Update input layer grad
 * input:  sequence of output layer grad
 * output: sequence of input layer grad
 *
 * \param outputs[0].matrix              input layer grad, n * d
 * \param outputs[0].vector              start position sequence, n * 1
 * \param inputs[0].matrix               output layer grad, n * (d * l)
 * \param inputs[0].vector               start positon sequence, n * 1
298 299 300 301 302 303 304 305 306 307 308 309
 */
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(1, static_cast<int>(inputs.size()));
    CHECK_EQ(1, static_cast<int>(outputs.size()));
X
xutianbing 已提交
310 311 312 313 314 315 316 317 318 319 320
    CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg())
        << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
    const auto out_seq = dynamic_cast<const SequenceArg&>(outputs[0]);

    CHECK(in_seq.data() && out_seq.data() && in_seq.getSequenceIds().data());
    CHECK_EQ(static_cast<int>(out_seq.shape().ndims()), 2);
    CHECK_EQ(static_cast<int>(in_seq.shape().ndims()), 2);
    CHECK_EQ(static_cast<int>(in_seq.getSequenceIds().shape().ndims()), 1);
    /// output layer grad dim == input layer grad dim * context_length_
    CHECK_EQ(in_seq.shape().ndims(), out_seq.shape().ndims() * context_length_);
321
    /// input and output has the same batch_size
X
xutianbing 已提交
322 323 324 325 326 327
    CHECK_EQ(in_seq.shape()[0], out_seq.shape()[0]);
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);

    const auto out_grad_mat = in_seq.matrix<Device>();
    const auto seq_vec = in_seq.getSequenceIds().vector<int, Device>();
    auto in_grad_mat = out_seq.matrix<Device>();
328 329 330 331 332 333 334 335 336 337 338

    ContextProjectionBackwardData<Device>(
        out_grad_mat, in_grad_mat, seq_vec, context_length_, context_start_);
  }

private:
  size_t context_length_;
  int context_start_;
};

/**
X
xutianbing 已提交
339 340 341 342 343 344 345 346
 * Context Projection Backward Weight Function
 * Update weight grad by backprop
 * input:  sequence of output layer grad
 * output: weight grad
 *
 * \param outputs[0]                   weight grad, pad * d
 * \param inputs[0].matrix             output layer grad, n * (d * l)
 * \param inputs[0].vecotr             start positon sequence, n * 1
347 348 349 350 351 352 353 354 355 356 357 358 359 360
 */
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    total_pad_ = config.get<size_t>("total_pad");
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(1, static_cast<int>(inputs.size()));
    CHECK_EQ(1, static_cast<int>(outputs.size()));
X
xutianbing 已提交
361 362 363
    CHECK(inputs[0].isSequenceArg()) << "SequenceArg required here";
    const auto in_seq = dynamic_cast<const SequenceArg&>(inputs[0]);
    CHECK(in_seq.data() && in_seq.getSequenceIds().data() && outputs[0].data());
364
    CHECK_EQ(static_cast<int>(outputs[0].shape().ndims()), 2);
X
xutianbing 已提交
365 366 367 368 369 370 371 372 373 374
    CHECK_EQ(static_cast<int>(in_seq.shape().ndims()), 2);
    CHECK_EQ(static_cast<int>(in_seq.getSequenceIds().shape().ndims()), 1);
    CHECK_EQ(in_seq.shape()[0], outputs[0].shape()[0]);
    /// output layer grad dim == weight dim * context_length_
    CHECK_EQ(in_seq.shape()[1], outputs[0].shape()[1] * context_length_);
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);

    const auto seq_vec = in_seq.getSequenceIds().vector<int, Device>();
    const auto out_grad_mat = in_seq.matrix<Device>();
    auto w_grad_mat = outputs[0].matrix<Device>();
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    ContextProjectionBackwardWeight<Device>(out_grad_mat,
                                            w_grad_mat,
                                            seq_vec,
                                            context_length_,
                                            context_start_,
                                            total_pad_,
                                            begin_pad_);
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  size_t total_pad_;
};

391 392 393
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
394 395 396
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
397 398 399 400
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
401 402 403
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
404 405 406 407 408 409
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
                    GPU,
                    ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
                    GPU,
                    ContextProjectionBackwardWeightFunc);
410
#endif
411
}  // namespace paddle