conditional_block_op.cc 9.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14
#include <algorithm>
Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

class ConditionalOp : public framework::OperatorBase {
 public:
  ConditionalOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  std::vector<const framework::LoDTensor *> InputTensors(
      const framework::Scope &scope) const {
    std::vector<const framework::LoDTensor *> retv;
    auto xs = Inputs("X");
    retv.resize(xs.size(), nullptr);
    std::transform(
        xs.begin(), xs.end(), retv.begin(),
        [&scope](const std::string &var_name) -> const framework::LoDTensor * {
          auto *var = scope.FindVar(var_name);
          PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
          return &var->Get<framework::LoDTensor>();
        });
    return retv;
  }
44 45 46 47 48 49 50 51 52 53 54 55 56

  bool ScalarCondition(
      const std::vector<const framework::LoDTensor *> &ips) const {
    if (!(ips.size() == 1UL && ips[0]->IsInitialized())) {
      PADDLE_THROW("should have one initialized input as condition");
    }
    if (!(ips[0]->type().hash_code() == typeid(bool).hash_code() &&
          ips[0]->numel() == 1)) {
      PADDLE_THROW(
          "condition input's data type should be bool, "
          "numel should be 1, actual numel is %d",
          ips[0]->numel());
    }
57 58 59 60 61 62 63 64 65 66 67 68
    bool res;
    if (platform::is_gpu_place(ips[0]->place())) {
#ifdef PADDLE_WITH_CUDA
      framework::LoDTensor cpu_tensor;
      framework::TensorCopy(*ips[0], platform::CPUPlace(), &cpu_tensor);
      platform::DeviceContextPool::Instance().Get(ips[0]->place())->Wait();
      res = cpu_tensor.data<bool>()[0];
#endif
    } else {
      res = ips[0]->data<bool>()[0];
    }
    return res;
69
  }
Y
Yu Yang 已提交
70 71 72 73 74 75 76 77 78
};

class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
79 80 81 82

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yu Yang 已提交
83
    auto xs = InputTensors(scope);
84 85 86 87 88 89 90 91 92

    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
      need_run = ScalarCondition(xs);
    } else {
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
93 94 95 96 97 98 99 100 101

    if (need_run) {
      auto *scope_var = scope.FindVar(Output("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();

D
dzhwinter 已提交
102
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
103
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
104 105 106 107 108 109 110
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);
    }
  }
};

class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
111
  ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "The conditional variable of this operator. If X is empty, the "
             "whole sub-block will not be executed.")
        .AsDuplicable();
    AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
    AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
    AddOutput("Scope",
              "(std::vector<Scope*>) The step scope of conditional block. To "
              "unify the conditional block, rnn and while op, the type of "
              "scope is std::vector<Scope*>");
Y
Yu Yang 已提交
123
    AddAttr<framework::BlockDesc *>(
124
        "sub_block", "The step block of conditional block operator");
125 126 127 128
    AddAttr<bool>("is_scalar_condition",
                  "the input X is used as scalar "
                  "condition")
        .SetDefault(false);
Y
Yu Yang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    AddComment(R"DOC(Conditional block operator

Run the sub-block if X is not empty. Params is the other inputs and Out is the
outputs of the sub-block.
)DOC");
  }
};

class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
144 145 146 147

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yu Yang 已提交
148
    auto xs = this->InputTensors(scope);
149 150 151 152 153 154 155 156 157

    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
      need_run = ScalarCondition(xs);
    } else {
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
158 159 160 161 162 163 164

    if (need_run) {
      auto *scope_var = scope.FindVar(Input("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
165
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
166
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
167 168
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);

D
dzhwinter 已提交
169
      AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("Params"),
Y
Yu Yang 已提交
170 171
                                  Outputs(framework::GradVarName("Params")));

D
dzhwinter 已提交
172
      AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("X"),
Y
Yu Yang 已提交
173 174 175 176 177 178
                                  Outputs(framework::GradVarName("X")));
    }
  }

 private:
  void AssignLocalGradientToGlobal(
D
dzhwinter 已提交
179
      const platform::Place &place, const framework::Scope &cur_scope,
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189
      const std::vector<std::string> &p_names,
      const std::vector<std::string> &pg_names) const {
    for (size_t i = 0; i < p_names.size(); ++i) {
      auto out_grad_name = pg_names[i];
      auto in_grad_name = framework::GradVarName(p_names[i]);
      auto *in_var = cur_scope.FindVar(in_grad_name);
      if (in_var == nullptr) {
        continue;
      }
      auto new_in_grad_name = cur_scope.Rename(in_grad_name);
Y
Yiqun Liu 已提交
190 191 192
      auto assign = framework::OpRegistry::CreateOp(
          "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
          framework::AttributeMap{});
D
dzhwinter 已提交
193
      assign->Run(cur_scope, place);
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
      cur_scope.Rename(new_in_grad_name, in_grad_name);
    }
  }
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInputs("X"));
    if (context->HasInputs("Params")) {
      PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
      context->SetOutputsDim(framework::GradVarName("Params"),
                             context->GetInputsDim("Params"));
    }
    PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
    context->SetOutputsDim(framework::GradVarName("X"),
                           context->GetInputsDim("X"));
  }
};

class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
219 220
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
221 222 223 224 225 226
    grad_op->SetType("conditional_block_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput("Params", Input("Params"));
    grad_op->SetInput("Out", Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetInput("Scope", Output("Scope"));
227 228 229
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
    grad_op->SetOutput(framework::GradVarName("Params"),
                       InputGrad("Params", false));
230
    grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
231
    grad_op->SetAttr("is_scalar_condition", GetAttr("is_scalar_condition"));
Y
Yu Yang 已提交
232
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241 242 243 244
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
                  ops::ConditionalBlockOpProtoMaker,
                  ops::ConditionalBlockGradMaker);
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);