test_helper.h 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19
#pragma once

#include <map>
#include <random>
#include <string>
#include <vector>
20

Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
23
#include "paddle/fluid/platform/profiler.h"
24 25

template <typename T>
26
void SetupTensor(paddle::framework::LoDTensor* input,
27
                 paddle::framework::DDim dims, T lower, T upper) {
28 29
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
30 31 32 33 34
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
35 36 37
  }
}

38
template <typename T>
39 40
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
41
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
42 43
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
44 45
}

46
template <typename T>
47 48 49
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
50
  int dim = lod[0][lod[0].size() - 1];
51 52 53 54
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
55
void SetupLoDTensor(paddle::framework::LoDTensor* input,
56
                    paddle::framework::DDim dims,
57 58
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
59
  const size_t level = lod.size() - 1;
60
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
61
  input->set_lod(lod);
62
  SetupTensor<T>(input, dims, data);
63 64 65
}

template <typename T>
66 67
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
89
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
    const std::string& dirname, const bool is_combined = false) {
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    std::string prog_filename = "__model_combined__";
    std::string param_filename = "__params_combined__";
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
    const std::string& dirname, const bool is_combined = false) {
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

  auto inference_program = InitProgram(&executor, scope, dirname, is_combined);
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146 147
void EnableMKLDNN(
    const std::unique_ptr<paddle::framework::ProgramDesc>& program) {
  for (size_t bid = 0; bid < program->Size(); ++bid) {
    auto* block = program->MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
}

148
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
149 150
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
151
                   const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
T
tensor-tang 已提交
152 153
                   const int repeat = 1, const bool is_combined = false,
                   const bool use_mkldnn = false) {
154
  // 1. Define place, executor, scope
155 156 157 158
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

159 160 161 162 163 164
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
165
    state = paddle::platform::ProfilerState::kAll;
166 167 168 169
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
170 171
#else
    PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
172 173 174
#endif
  }

175 176
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
177 178 179

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
180 181 182 183
  {
    paddle::platform::RecordEvent record_event(
        "init_program",
        paddle::platform::DeviceContextPool::Instance().Get(place));
184
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
T
tensor-tang 已提交
185 186 187
    if (use_mkldnn) {
      EnableMKLDNN(inference_program);
    }
188
  }
189 190
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
191
                                    "load_program_profiler");
192
  paddle::platform::ResetProfiler();
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

  // 6. Run the inference program
214
  {
215 216 217 218
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
219
      executor.CreateVariables(*inference_program, scope, 0);
220 221
    }

222
    // Ignore the profiling results of the first run
223 224 225
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
226
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
W
Wu Yi 已提交
227
                                  &fetch_targets, true, CreateVars);
228
    } else {
229
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
W
Wu Yi 已提交
230
                   true, CreateVars);
231
    }
232 233 234 235

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

236 237 238 239 240 241
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
      paddle::platform::RecordEvent record_event(
          "run_inference",
          paddle::platform::DeviceContextPool::Instance().Get(place));

242
      if (PrepareContext) {
L
Liu Yiqun 已提交
243
        // Note: if you change the inference_program, you need to call
244
        // executor.Prepare() again to get a new ExecutorPrepareContext.
245 246
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
                                    &fetch_targets, CreateVars);
247
      } else {
248
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
249
                     CreateVars);
250
      }
251 252
    }

253 254
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
255
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
256 257
    paddle::platform::ResetProfiler();
  }
258 259 260

  delete scope;
}