gaussian_random_op.cu 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
28
  unsigned int offset_ = 0;
Q
qijun 已提交
29 30 31 32

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

33 34 35
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
36 37 38
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
Q
qijun 已提交
39
    thrust::normal_distribution<T> dist(mean_, std_);
40 41
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
Q
qijun 已提交
42 43 44 45 46
    return dist(rng);
  }
};

template <typename T>
Y
Yu Yang 已提交
47
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
48 49 50
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
51
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
52
    bool seed_flag = false;
Q
qijun 已提交
53 54 55
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
56
      seed_flag = true;
Q
qijun 已提交
57
    }
Y
Yu Yang 已提交
58 59
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Q
qijun 已提交
60
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
61 62 63 64 65
    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

66
    int64_t size = tensor->numel();
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
      int offset_step = 100;
      // NOTE(xuefeng): Currently, we let offset step fixed to avoid
      // unexpected results which may cause ut fail.
      // we will fix this in future.
      int gen_offset = offset_step * seed_offset.second;
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
88 89 90
  }
};

91 92 93 94 95 96 97
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
98
    bool seed_flag = false;
99 100 101
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
102
      seed_flag = true;
103 104 105 106 107
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
      int offset_step = 100;
      // NOTE(xuefeng): Currently, we let offset step fixed to avoid
      // unexpected results which may cause ut fail.
      // we will fix this in future.
      int gen_offset = offset_step * seed_offset.second;
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
129 130
  }
};
Q
qijun 已提交
131 132
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
133

Q
QI JUN 已提交
134
REGISTER_OP_CUDA_KERNEL(gaussian_random,
135 136
                        paddle::operators::GPUGaussianRandomKernel<float>,
                        paddle::operators::GPUGaussianRandomKernel<double>);
137 138 139 140
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);